Richtig messen mit USB-Scope - Messpraxis und Zusatzgeräte für den Selbstbau

von: Frank Sichla

Franzis, 2009

ISBN: 9783772337239 , 192 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 9,99 EUR

Mehr zum Inhalt

Richtig messen mit USB-Scope - Messpraxis und Zusatzgeräte für den Selbstbau


 

7 Praktische Beurteilung eines Oszilloskops (S. 63-64)

Ein Oszilloskop kann man im Wesentlichen anhand seiner Daten aus den Unterlagen beurteilen. Feinheiten muss man durch praktische Tests auf die Spur kommen. Aufgeführt werden hier alle wichtigen Kriterien für analoge und digitale Typen.

7.1 Das A und O: die Bandbreite

Das wichtigste Qualitätsmerkmal ist die Bandbreite (beim digitalen Scope spricht man auch von analoger Bandbreite). Sie ist beim analogen Oszilloskop identisch mit der oberen –3-dB-Grenzfrequenz.

Merke: Je größer die Bandbreite, desto kleiner ist für eine bestimmte Messfrequenz der Fehler durch den Frequenzgang und umso getreuer werden Flanken dargestellt.

Das gilt uneingeschränkt nur für analoge Scopes. Beim digitalen Oszilloskop kann die Bandbreite auch von der Abbildungsqualität des Signals begrenzt werden. Hier existieren also zwei Kriterien: Amplitudenrückgang um 3 dB (29 %) einsetzende Verzerrung Während das erste Kriterium exakt definiert ist, hat man beim zweiten einen Interpretationsspielraum. Eine weitere Eigenheit der digitalen Scopes ist, das es zwei grundverschiedene Möglichkeiten des Abtastens gibt: Echtzeit- und periodisches Sampling (vgl. Abschnitt 5.2). Die meisten USB-Scopes beherrschen beide Spielarten. Mit periodischem Sampling sind in der Regel wesentlich höhere Bandbreiten möglich als mit Echtzeit-Sampling. Eine exakte Bandbreitenangabe für ein USB-Scope benötigt also noch zwei Zusatzinformationen und könnte beispielsweise so lauten:

Bandbreite 50 MHz (-3 dB, periodisch)

Theoretisch wird die Bandbreite von der Abtastrate bestimmt. Das könnte dazu verleiten, die Abtastrate(n) als entscheidendes Kriterium anzusehen. Das praktische Verhalten der USB-Scopes lehrt jedoch, dass die Abtastrate hier keine verlässliche Richtschnur für die Bandbreite darstellt. Der Frequenzgang kann von Scope-Typ zu Scope-Typ variieren. Man kann den Frequenzgang mit dem amplitudenkonstanten Signal eines durchstimmbaren HF-Gene- rators austesten.

Dabei darf die Eingangskapazität des Oszilloskops auch bei den üblichen 50 Ohm Innenwiderstand des Messgenerators nicht vernachlässigt werden. Bei einem Wert von 35 pF ergibt sich bei 10 MHz ein Blindwiderstand von 457 Ohm, also eine nennenswerte Belastung. Bei 10 MHz ist dann also schon von einem Messfehler von mehreren Prozent auszugehen. Bei höheren Frequenzen spielt noch der reduzierte ohmsche Anteil des Scope-Eingangswiderstands mit hinein. Um diese Einflüsse zu vermindern, kann man einen niederohmigen Spannungsteiler zwischenschalten. Besteht dieser beispielsweise aus Widerständen von 47 und 5,6 Ohm, liegt der Quellwiderstand für das Scope bei 5 Ohm, die Spannungsteilung bei 10 gegenüber 50-Ohm-Abschluss bzw. 20 gegenüber Leerlauf. Sowohl die Widerstandswerte als auch der Teilerfaktor sind unkritisch, wichtig ist nur die Senkung des Quellwiderstands für das Scope. 7.2 Das Impulsverhalten Ein ebenfalls wichtiges Kriterium jedes Oszilloskops ist das Impulsverhalten.

Ein praktisch tadelloser Impuls sollte auch so abgebildet werden. Das gelingt den Oszilloskopen nur eingeschränkt, denn bereits theoretisch können ansteigende und abfallende Flanke nicht mit Originalgeschwindigkeit nachvollzogen werden. Die Scope-Darstellung ist also weniger steil – das bedeutet eine höhere Anstiegs- und Abfallzeit als in der Wirklichkeit. Der Amplitudenspielraum für diese Zeiten ist definiert von 10 auf 90 % bzw. von 90 auf 10 % der Impulshöhe.

Das analoge Scope kann einer idealen Flanke nur gemäß der Formel t = 0,35 / Bandbreite folgen. Dies ist auch bei den meisten USB-Scopes der Fall. Ein 35-MHz-Scope würde demnach einer idealen Flanke in nur 10 ns folgen können (0,35 / 35 MHz = 0,01 µs = 10 ns). Die Eigenanstiegszeit des Scopes beträgt 10 ns. Das zeigt, dass eine hohe Bandbreite auch für die möglichst getreue Darstellung von digitalen Signalen unentbehrlich ist. Weiter sollte das Überschwingen gering sein, das Impulsdach sollte möglichst perfekt wirken.