Genetics and Genomics of the Triticeae

von: Catherine Feuillet, Gary J. Muehlbauer

Springer-Verlag, 2009

ISBN: 9780387774893 , 700 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 277,13 EUR

Mehr zum Inhalt

Genetics and Genomics of the Triticeae


 

Foreword

6

Preface

9

Acknowledgments

11

Contents

12

Contributors

15

Part I: Genetics of the Triticeae

20

Scientific Names in the Triticeae

21

1.1 The Triticeae

21

1.2 Why so Many Names?

22

1.2.1 Impact of New Technologies on the Taxonomy of the Triticeae

23

1.2.2 Integrating New Information into the Taxonomy of the Triticeae

24

1.3 Interaction of Taxonomy and Nomenclature-Some Examples

25

1.3.1 Multiple Names at the Generic Level: Pseudoroegneria

25

1.3.2 Multiple Names at the Generic Level: Elymus

26

1.3.3 Additional Problems with Generic Changes

26

1.3.4 Multiple Names at the Species Level and Below: The Triticum monococcum Complex

27

1.4 Taxonomic Treatment in this Chapter

31

1.4.1 Taxonomic Treatment in this Chapter: The Genera

32

1.4.2 Taxonomic Treatment in this Chapter: The Species

40

1.5 Nomenclatural Web Sites

41

1.6 Appendix

42

References

44

Triticeae Genetic Resources in ex situ Genebank Collections

49

2.1 Introduction

49

2.2 Material and Methods

50

2.2.1 Information Sources: Online Databases and Reports

50

2.2.2 Information Extraction and Processing

51

2.2.3 Handling of Nomenclature

52

2.3 List of Cultivated and Useful Triticeae Species

53

2.3.1 Aegilops - Goat Grass

53

2.3.2 x Aegilotriticum

54

2.3.3 Agropyron - Wheatgrass

54

2.3.4 Amblyopyrum

55

2.3.5 Brachypodium - False Brome

55

2.3.6 Dasypyrum - Mosquitograss

55

2.3.7 Elymus - Wheatgrass, Wild Rye

55

2.3.8 Eremopyrum - False Wheatgrass

56

2.3.9 Heteranthelium

56

2.3.10 Hordeum - Barley

57

2.3.11 Kengyilia

57

2.3.12 Leymus - Wildrye

57

2.3.13 Pascopyrum - Wheatgrass

58

2.3.14 Psathyrostachys - Wildrye

58

2.3.15 Pseudoroegneria - Wheatgrass

59

2.3.16 Secale - Rye

59

2.3.17 Thinopyrum - Wheatgrass

60

2.3.18 x Triticosecale - Triticale

60

2.3.19 Triticum - Wheat

60

2.3.20 x Tritordeum

62

2.4 Overview of ex situ Collections of Triticeae

62

2.4.1 Overview by Countries and Institutions

62

2.4.2 Overviews by Genera and Species

64

2.4.3 Collections of Genetic Stocks and Mutants

64

2.4.4 Triticum

67

2.4.5 Hordeum

70

2.4.6 x Triticosecale

75

2.4.7 Aegilops

77

2.4.8 Secale

80

2.4.9 Elymus

82

2.4.10 Agropyron

84

2.4.11 Other Triticeae Species

85

2.4.12 Brachypodium

89

2.5 Outlook and Conclusions

90

2.6 Appendix: Online Databases

92

References

92

Domestication of the Triticeae in the Fertile Crescent

98

3.1 Origins of Cultivated Plants and Agriculture - A Brief Historical Overview

99

3.2 Evolution and Domestication of Triticeae

100

3.2.1 Wheat Evolution and Domestication

101

3.2.1.1 Diploid Wheats

102

3.2.1.2 Tetraploid Wheats

105

3.2.1.3 Hexaploid Wheats - Bread Wheat

106

3.2.2 Barley Evolution and Domestication

107

3.2.3 Rye Evolution and Domestication

109

3.3 Traits Modified by Domestication

111

3.3.1 Free-Threshing

111

3.3.2 Brittle-Rachis

115

3.3.3 Seed Size and Grain Yield

115

3.3.4 Kernel Rows in the Ear

116

3.3.5 Plant Height

116

3.3.6 Grain Hardness

117

3.3.7 Tillering

118

3.3.8 Reduced Seed Dormancy

119

3.3.9 Control of Flowering Time

119

3.3.10 Photoperiod

119

3.3.11 Vernalization

120

3.3.12 Heading Time

121

3.3.13 Conclusions and Final Considerations

121

References

122

Cytogenetic Analysis of Wheat and Rye Genomes

137

4.1 Introduction

137

4.2 The Five Phases of Formal Wheat Cytogenetics Research

138

4.3 Wheat Anchor Karyotype

140

4.4 Wheat Chromosome Differentiation

142

4.5 Rye Anchor Karyotype

144

4.6 Future Prospects

146

References

147

Applying Cytogenetics and Genomics to Wide Hybridisations in the Genus Hordeum

152

5.1 Introduction

152

5.2 Cytological Characterisation and Chromosome Nomenclature of Barley Chromosomes

153

5.3 Cytogenetics and Species Relationships

157

5.4 Physical Mapping of the Barley Genome

160

5.5 Generation of Haploid Barley Through Wide Hybridisation and Uniparental Chromosome Elimination

162

5.6 Practical Breeding Applications of Cytogenetics

164

References

170

Methods for Genetic Analysis in the Triticeae

178

6.1 Construction of High Quality Dense Genetic Maps

178

6.1.1 Multilocus Ordering

179

6.1.2 Map Verification Procedures

180

6.1.3 Complication due to ‘Pseudo-Linkage’ and Negative Interference

181

6.1.4 Increasing the Stability of Multilocus Maps

185

6.1.5 Building Consensus Maps

186

6.2 QTL Mapping

189

6.2.1 Multiple Trait Analysis

190

6.2.2 Paradoxical Consequences of Variance-Covariance Effect

193

6.2.3 Multiple Environments

196

6.3 High-Resolution Mapping Based on Selective DNA Pooling

204

6.3.1 Standard Selective DNA Pooling Approach to QTL Mapping

204

6.3.2 Linkage Analysis (RIL)

206

6.3.3 Association Analysis

207

6.3.4 Simulations

208

6.3.5 Example of RIL Data Analysis by FPD

208

6.3.6 Example of Association Analysis by FPD

209

6.4 Final Comments

210

References

211

Genetic Mapping in the Triticeae

215

7.1 Introduction

216

7.2 Genetic Linkage Maps

217

7.2.1 Wheat Genetic Linkage Maps

222

7.2.2 Durum Genetic Linkage Maps

222

7.2.3 Barley Genetic Linkage Maps

222

7.2.4 Rye Genetic Linkage Maps

223

7.2.5 Triticale Genetic Linkage Maps

223

7.3 Physical Linkage Maps

224

7.4 Map Curation

225

7.5 Consensus Maps

227

7.6 QTL Mapping

231

7.6.1 Practical Considerations for QTL Mapping

231

7.7 High-Resolution Mapping

233

7.8 Future Directions

237

References

238

Early Stages of Meiosis in Wheat- and the Role of Ph1

250

8.1 The Introduction

250

8.2 Chromosome Sorting for Meiosis

251

8.3 Recombination- Factors Affecting its Distribution

252

8.4 Polyploids

253

8.5 Chromosome Pairing Loci

254

8.6 The Ph1 Locus

255

8.7 Exploitation of Chromosome Pairing Loci

261

References

262

Part 2: Tools, Resources and Approaches

266

A Toolbox for Triticeae Genomics

267

9.1 Introduction

267

9.2 Molecular Markers

268

9.2.1 Restriction Fragment Length Polymorphism (RFLP) Clones

268

9.2.2 Simple Sequence Repeat (SSR) Markers

270

9.2.3 Amplified Fragment Length Polymorphism (AFLP) Markers

272

9.2.4 Repeat-Based Markers

273

9.2.5 Diversity Array Technology (DArT) Markers

277

9.2.6 Single Nucleotide Polymorphism (SNP) Arrays

278

9.3 Expressed Sequence Tag (EST) Sequences and Microarrays

280

9.4 Bacterial Artificial Chromosome (BAC) Libraries

281

9.5 Outlook

284

References

285

Chromosome Genomics in the Triticeae

296

10.1 Introduction

296

10.2 Flow Cytogenetics

299

10.3 Applying Flow Cytogenetics to Triticeae Genomics

301

10.3.1 Hexaploid Wheat

302

10.3.2 Tetraploid Durum Wheat

305

10.3.3 Barley

306

10.3.4 Rye

308

10.3.5 A Toolkit for Triticeae Chromosome Sorting

310

10.4 Chromosome Genomics

312

10.4.1 Bacterial Artificial Chromosome (BAC) Libraries

312

10.4.2 BAC Contig Physical Maps and Positional Gene Cloning

313

10.4.3 Molecular Organization of Subgenomic Regions

316

10.4.4 Development of Molecular Markers

316

10.4.5 Physical and Genetic Mapping Using Flow-Sorted Chromosomes

318

10.4.6 Cytogenetic Mapping and Chromosome Structure

319

10.5 Conclusions

320

References

321

Physical Mapping in the Triticeae

328

11.1 Introduction

328

11.2 Generating a Physical Map - Basic Principles and Methods

329

11.2.1 Ordered-Marker Based Physical Mapping

329

11.2.1.1 Use of Cytogenetic Stocks and Chromosome-Microdissection

330

11.2.1.2 Fluorescence In Situ Hybridization (FISH)

332

11.2.1.3 Radiation Hybrid Mapping (RH) - HAPPY Mapping

333

11.2.2 Ordered-Clone Based Physical Mapping

335

11.2.2.1 Chromosome Walking

338

11.2.3 Optical Mapping

338

11.3 Physical Maps of Triticeae Genomes

339

11.3.1 Physical Maps of Diploid Triticeae Genomes

340

11.3.1.1 Aegilops Tauschii

340

11.3.1.2 Barley (Hordeum vulgare)

341

11.3.2 Physical Maps of Polyploid Triticeae Genomes

342

11.3.2.1 Bread wheat (Triticum aestivum)

342

11.4 Conclusion

342

References

343

Map-Based Cloning of Genes in Triticeae (Wheat and Barley)

347

12.1 Introduction

347

12.2 Genes Isolated from Wheat and Barley by Positional Cloning

348

12.3 Genetic Mapping

353

12.4 Physical Mapping for Map-Based Cloning

355

12.5 Application and Problems of Chromosome Walking in Triticeae

355

12.6 Problems Caused by Repetitive Elements

356

12.7 Aspects of Sequencing and Identification of Candidate Genes

357

12.8 The Use and Limits of Model Genomes for Marker Development and Map-Based Cloning in Triticeae

358

12.9 Validation of Candidate Genes

360

12.10 The Role of Bioinformatics in Map-Based Cloning

362

12.11 Outlook

363

References

364

Functional Validation in the Triticeae

368

13.1 Introduction

368

13.2 Targeted Induced Local Lesions in Genomes (TILLING)

369

13.2.1 Mutagens and Mutation Frequency

369

13.2.2 Mutation Spectrum Analysis

371

13.2.3 Web-Based Computational Tools for TILLING

371

13.2.4 Populations for Reverse Genetics

372

13.2.5 Mutation Detection and Validation

373

13.2.6 Mutation Confirmation and Functional Validation

374

13.3 Transient Gene Validation Assays

375

13.3.1 Virus Induced Gene Silencing (VIGS)

375

13.3.2 Biolistic Approaches

377

13.3.3 Antisense Oligodeoxynucleotide

378

13.4 Stable Genetic Transformation

380

13.4.1 Transfer of Recombinant DNA into Plant Cells

380

13.4.2 Patterns of DNA-Integration

382

13.4.3 The Design of Transformation Vectors

383

13.4.4 Insertional Mutagenesis

385

13.4.5 Linking Manipulated Gene Expression with Gene Function

385

13.5 Final Remarks

387

References

387

Genomics of Transposable Elements in the Triticeae

395

14.1 Introduction

396

14.2 Structural Genomics

398

14.3 Functional Genomics

403

14.3.1 Direct Effects

403

14.3.2 Effects on Genes, Sequence Chimeras, and Gene Regulation

406

14.4 Comparative Genomics

407

14.5 Exploitation as Molecular Markers

407

14.6 Conclusions

409

References

409

Gene and Repetitive Sequence Annotation in the Triticeae

414

15.1 Triticeae Genomics

415

15.2 Triticeae Genome Sequence and Annotation Data

416

15.2.1 The Triticeae Transcriptome

416

15.2.2 The Triticeae Genomes

417

15.2.3 Genome Annotation: Structural and Functional Annotation

418

15.2.4 Comparative Genome Annotation

420

15.3 Repetitive Sequences in the Triticeae

421

15.3.1 Methods for the Identification of Transposable Elements

421

15.3.2 Problems with Transposable Elements in Triticeae Sequencing

423

15.3.3 Software for Repeat Recognition and Isolation

425

15.3.4 The Challenge of the Large Number: Quality in Quantity is Needed

426

References

427

Brachypodium distachyon, a New Model for the Triticeae

433

16.1 Model Systems in Biology

433

16.2 Introduction to Brachypodium distachyon

434

16.2.1 Genome Size and Polyploidy

436

16.2.2 Relationship to Other Grasses

437

16.3 Brachypodium as An Experimental System

437

16.3.1 Growth Requirements and Flowering Triggers

438

16.3.2 Germplasm Resources and Natural Diversity

440

16.3.3 Chemical and Radiation Mutagenesis

441

16.3.4 Transformation and T-DNA Tagging

441

16.3.5 Related Species

444

16.4 Genomic Resources

445

16.4.1 ESTs

445

16.4.2 BAC Library Resources

446

16.4.3 Physical and Genetic Maps

447

16.4.4 Whole Genome Sequencing

448

16.4.5 Bioinformatic Resources

448

16.5 Applications of Brachypodium as a Model for Grass Research

448

16.5.1 Brachypodium as Structural Model for Wheat and Barley Genomics

449

16.5.2 Brachypodium as a Functional Model

450

16.6 Future Prospects and Directions

452

References

453

Comparative Genomics in the Triticeae

456

17.1 Introduction

456

17.2 Comparative Genomics at the Genome Scale: Macrocolinearity

458

17.2.1 Marker Based Macrocolinearity Studies

459

17.2.2 Sequence Based Macrocolinearity Studies

460

17.3 Comparative Genomics at the ‘‘Locus-Based’’ Level: Microcolinearity

463

17.3.1 Interspecific Comparative Studies: Looking at 50-70 MY of Speciation

463

17.3.2 Intraspecific Comparisons: Microcolinearity Studies Within Few MY of Speciation

465

17.3.3 Intravarietal Comparisons: Microcolinearity Studies Within Few 10,000 Years of Speciation

467

17.4 Duplications in the Triticeae Genomes

469

17.5 Comparative Genomics as Tool for Gene Discovery and Marker Development

472

17.5.1 Colinearity-Based Gene Cloning in Triticeae

472

17.5.2 Comparative Genomics Supports Gene Annotation and Marker Development

474

17.6 Summary and Outlook

475

References

476

Part III: Genetics and Genomics of Triticeae Biology

483

Genomics of Tolerance to Abiotic Stress in the Triticeae

484

18.1 Introduction

484

18.2 Searching QTLs and Genes for Tolerance to Abiotic Stress

485

18.2.1 Candidate Gene Approach

515

18.2.2 Exploiting the ‘‘-omics’’ Platforms

516

18.3 QTLs and Genes for Tolerance to Abiotic Stress

518

18.3.1 Tolerance to Drought

519

18.3.1.1 Barley

520

18.3.1.2 Wheat

522

18.3.2 Tolerance to Salinity

524

18.3.3 Tolerance to Low Nutrients

525

18.3.3.1 Nitrogen

526

18.3.3.2 Phosphorus

528

18.3.4 Tolerance to Aluminium Toxicity

529

18.3.5 Tolerance to Boron Toxicity

531

18.3.6 Tolerance to Zinc and Manganese Deficiency

532

18.3.7 Tolerance to Waterlogging

533

18.3.8 Tolerance to Low Temperature

534

18.3.9 Tolerance to High Temperature

536

18.4 Genomics of Genotype x Environment Interaction Under Conditions of Abiotic Stress

537

18.5 Prospects of Genomics-Assisted Improvement of Tolerance to Abiotic Stress

538

References

540

Genomics of Biotic Interactions in the Triticeae

562

19.1 Disease Epidemics and Current Threats

562

19.1.1 Plant Defenses Employed in Response to Biotic Stress

563

19.1.2 Integrative Genomics Holds the Keys to Durable Resistance

564

19.2 The Toolbox for Investigating Biotic Interactions

565

19.2.1 Molecule Profiling Approaches

565

19.2.2 Integration of Phenotypic, Genetic and Physical-Map Data

566

19.2.3 High-Throughput Functional Analysis

568

19.3 Triticeae-Fungal ‘‘Host’’ Interactions

572

19.4 Triticeae-Fungal ‘‘Nonhost’’ Interactions

574

19.5 Triticeae Interactions with Insects, Viruses, Worms and Bacteria

576

19.6 Pathogen Genomics

577

19.6.1 Fusarium graminearum (Fusarium Head Blight)

577

19.6.2 Puccinia graminis (Stem Rust)

578

19.6.3 Mycosphaerella graminicola (Septoria Tritici Blotch)

579

19.6.4 Stagonospora nodorum (Stagonospora Nodorum Blotch)

580

19.6.5 Blumeria graminis (Powdery Mildew)

580

19.6.6 Barley Yellow Dwarf Virus (BYDV)

581

19.7 Synthesis

582

References

583

Developmental and Reproductive Traits in the Triticeae

593

20.1 Introduction

593

20.2 Gene Catalogues

596

20.3 Identifying Flowering Time Genes in the Triticeae

597

20.3.1 The Candidate Gene Method

597

20.3.2 The Positional Cloning Method

598

20.3.3 The Positional Cloning/Candidate Gene Hybrid Method

599

20.4 Identifying Inflorescence Development Genes in the Triticeae

601

20.4.1 The Candidate Gene Method

601

20.4.2 The Positional Cloning Method

601

20.5 Understanding Gene Function

602

20.5.1 The Analysis of Genetic Pathways

602

20.5.2 Validation of Candidate Flowering Genes

604

20.6 Advances in Triticeae Genomics and Gene Identification

605

20.7 Using Flowering and Inflorescence Genes in Triticeae Breeding

607

References

607

Genomics of Quality Traits

612

21.1 Introduction

612

21.2 Genomics of Barley Quality

613

21.2.1 Human Food

613

21.2.2 Malting and Brewing

615

21.2.2.1 beta-amylase

616

21.2.3 QTL associated with malting quality

617

21.2.4 Germination as a Key Variable in Barley Quality

620

21.3 Genomics of Wheat Quality

622

21.3.1 The Wheat Flour Proteins

623

21.3.1.1 High Molecular Weight Glutenin Subunits (HMWGS)

626

21.3.1.2 Low Molecular Weight Glutenin Subunits (LMWGS)

627

21.3.2 Seed Storage Protein Gene Structure and Variation

628

21.3.2.1 Assaying Variation in Seed Storage Proteins

630

21.3.3 Flour Color

631

21.3.3.1 The Yellowness of Flour and Its End Products

632

21.3.3.2 The Finely Divided Bran Specks in Flour

632

21.3.4 Flour Paste Viscosity

634

21.4 Grain Hardness and Carbohydrates in Wheat and Barley

634

21.4.1 Starch Content

634

21.4.2 Starch Composition

635

21.4.3 Non-Starch Polysaccharides

636

21.4.4 Grain Hardness

636

21.5 Traits that Are Not Analysed at the Genomic Level to Date

637

21.5.1 Milling Yield

637

21.5.2 Water Absorption

638

21.5.3 Grain Protein Content

638

21.6 Impact of New Technologies

639

21.7 Conclusions

640

References

641

Part IV: Early Messages

654

Linkage Disequilibrium and Association Mapping in the Triticeae

655

22.1 Introduction

655

22.2 Linkage Disequilibrium

656

22.2.1 Measurement and Interpretation of Linkage Disequilibrium

656

22.2.2 LD Estimates for the Triticeae

658

22.3 Association Analysis

662

22.3.1 Population Structure

662

22.3.2 Association Mapping Strategies

663

22.3.3 Association Mapping in the Triticeae

665

22.3.4 Germplasm Panels

667

22.3.5 Simulations

669

22.4 Future Needs and Directions

671

22.4.1 Fine-Mapping

671

22.4.2 Breeding Applications

672

22.4.3 Association Breeding

673

22.4.4 Marker Assisted Recurrent Selection

676

22.4.5 Genomic Selection

677

References

677

Triticeae Genome Structure and Evolution

684

23.1 Structure of Triticeae Genomes

684

23.1.1 Genome Size

684

23.1.2 Overall Structure

685

23.1.3 Tandem Repeated Sequences

686

23.1.3.1 Centromeric Regions

687

23.1.3.2 Telomeric Region

689

23.1.3.3 Interstitial Sites

691

23.1.3.4 rRNA Genes

692

23.1.4 Interspersed Repeated Sequences

694

23.2 Genome Evolution

695

23.2.1 TEs and Triticeae Genome Evolution

695

23.2.2 Gene Order Paradox

696

23.2.3 Conservative and Dynamic Strata of Triticeae Genomes

697

23.2.4 Recombination and Gene Content Evolution Along the Centromere-Telomere Axis of Triticeae Chromosomes

698

23.2.4.1 Variation in Gene Density Along Chromosomes

699

23.2.4.2 The Cause of Correlation Between Gene Density and Recombination Rate

700

23.2.5 The Evolutionary Significance of Repeated DNA

701

23.3 Conclusions

702

References

702

Wheat and Barley Genome Sequencing

711

24.1 Introduction

711

24.2 History of Sequencing in Higher Plants

714

24.2.1 The First Plant Genome Model - Arabidopsis thaliana

718

24.2.2 The First Economically Important Plant Genome - Rice

718

24.2.3 The First Tree Genome - Poplar Genome Sequence

720

24.2.4 Two Grapevine Sequences

721

24.2.5 The First Moderately-Sized Plant Genome Sequence - Maize

721

24.2.6 Other Plant Genome Projects

722

24.3 Current Status of Triticeae Genome Sequencing

723

24.3.1 EST Sequencing

723

24.3.2 GSS

724

24.3.3 Contiguous Genomic DNA Sequences

725

24.4 Next Generation Sequencing (NGS) Technologies

726

24.4.1 Roche-454 GSFLX

727

24.4.2 Illumina Genome Analyzer

728

24.4.3 Applied Biosystems SOLiD (Sequencing by Oligo Ligation and Detection)

728

24.4.4 HeliScope, Helicos

729

24.4.5 Impact on Triticeae Genome Sequencing

729

24.5 The Future of Triticeae Genome Sequencing

731

24.6 Outlook

733

References

734

Index

741