Critical Infrastructures: Risk and Vulnerability Assessment in Transportation of Dangerous Goods - Transportation by Road and Rail

von: Bogdan I. Vamanu, Adrian V. Gheorghe, Polinpapilinho F. Katina

Springer-Verlag, 2016

ISBN: 9783319309316 , 224 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Critical Infrastructures: Risk and Vulnerability Assessment in Transportation of Dangerous Goods - Transportation by Road and Rail


 

Preface

7

Acknowledgments

11

Contents

12

1 Introduction

15

Abstract

15

1.1 Critical Infrastructures

15

1.2 Major Themes

17

1.3 Transportation of Hazardous Materials

20

References

21

2 Risk Assessment

24

Abstract

24

2.1 Risk Assessment in Hazmat Transportation

24

2.1.1 The Hot Spots Approach

25

2.1.1.1 Representing Risk in the Hot Spot Method: The Risk Matrix

27

2.1.2 The Statistical Approach

27

2.1.2.1 The Framework

27

2.1.2.2 The Statistical Method

28

2.2 Extension of the Risk Assessment Methodology for Multimodal Transportation

31

2.2.1 The ‘Hot Spot’ Method

31

2.2.2 The Statistical Method

32

2.2.3 The Complementary Cumulative Distribution Function as a Risk Expression of the Health Impact

32

References

33

3 Quantitative Probability Assessment of Loc Accident

35

Abstract

35

3.1 The Methodology: Loc Accident Probability Computation

35

3.1.1 Tools and Techniques

37

3.2 Models and Algorithms: Loc Accident Probability in Transportation by Rail

39

3.2.1 Computational Scheme for LOC Accident by Rail

40

3.3 Models and Algorithms: Loc Accident Probability in Transportation By Road

53

3.3.1 Deductively Model the Reality—MLD Development for LOC During Road Transportation

53

3.3.2 Computational Scheme for LOC Accident by Road

55

References

67

4 Loc Consequence Assessment

68

Abstract

68

4.1 Physical to Biological Effects’ Relationship

69

4.2 Fire Consequence Assessment

70

4.2.1 Pool Fire Consequence Assessment

72

4.2.1.1 Inputs

73

4.2.1.2 Risk-Relevant Output

74

4.2.1.3 Computational Steps

74

4.2.1.4 Effects Computation

75

4.2.2 Flare Fire Consequence Assessment

76

4.2.2.1 Saturation Pressure Constants

77

4.2.2.2 Inputs

77

4.2.2.3 Risk-Relevant Output

78

4.2.2.4 Computational Steps

78

4.2.2.5 Effects Computation

79

4.2.3 BLEVE Consequence Assessment

80

4.2.3.1 Input Data

81

4.2.3.2 Risk-Relevant Output

81

4.2.3.3 Computational Steps

81

4.2.3.4 Effects Computation

82

4.3 Explosion Consequence Assessment

83

4.3.1 The Algorithm

83

4.3.1.1 Constants

83

4.3.1.2 Inputs

84

4.3.1.3 Computational Steps

84

4.3.1.4 Lethality Percentage Due to Overpressure

88

4.3.1.5 Lethality Percentage Due to Fragments

90

4.4 Acute Intoxication Consequence Assessment

91

4.4.1 Computing the Risk Radii

92

4.4.2 Computing the Lethality Percentage

95

4.4.3 An Algorithm for Acute Intoxication Assessment

97

4.4.3.1 Inputs

98

4.4.3.2 Computational Steps

98

References

100

5 The Vulnerability Issue

102

Abstract

102

5.1 Definitions and Conceptualization

104

5.2 Methodological Aspects in Quantitative Vulnerability Assessment in Transport Systems

108

5.2.1 Transportation System Definition

109

5.2.2 Defining the System by Indicators

109

5.2.3 The Vulnerability Assessment of Transportation System

111

References

114

6 Consensus-Driven Models for QVA in Transportation Corridors

117

Abstract

117

6.1 The Index Method

117

6.1.1 Designing the System

118

6.1.2 The Risk-Management Capability Index and Weights Computation

118

6.1.2.1 Weights Computation

119

6.1.2.2 Computing the Level Weights

119

6.1.2.3 Computing the Final Weights

120

6.1.2.4 Assessment Results: The Vulnerability Index

121

6.1.3 The Index Method: Transportation Corridor Vulnerability Assessment

122

6.1.3.1 System Description by Indicators and Classification Structure

123

6.1.3.2 Transportation System Vulnerability Assessment

126

6.2 The Relevance Matrices Method

130

6.2.1 The Method

131

6.2.2 Transportation Corridor Vulnerability Assessment Model with the Relevance Matrices Method

133

References

152

7 Physical Analogies-Based Model for Quantitative Vulnerability Assessment of Transportation Corridors

154

Abstract

154

7.1 Quantitative Vulnerability Assessment Method; Modeling Cooperative Phenomena in Multi-component Systems

154

7.1.1 System Description by Indicators

156

7.1.2 The Control Variables

157

7.1.3 System Constituents—System State Space

157

7.1.4 Vulnerability Basins—The Instability Region

163

7.1.5 The Quantitative Vulnerability Assessment

164

7.2 Applying QVA Model for the Vulnerability Assessment of Transportation Corridors

165

7.2.1 Indicators Selection

165

7.2.2 Computing the Physical Indicators—YUi and YVj

165

7.2.3 Transportation System Vulnerability Assessment

165

References

169

8 An Illustrative Example—The Case for Aarau-Zurich

171

Abstract

171

8.1 Transportation Description

171

8.1.1 Graph Coordinate Axis Limits

171

8.1.2 Transportation Statistics

172

8.2 Representation Maps of the Transportation

173

8.2.1 ‘Aarau-Zurich’ TRANSPORTATION Map Representation

173

8.2.1.1 TRIP ‘S0 Aarau-Zurich 35 t’

173

8.2.1.2 TRIP ‘S1 Zurich’

177

8.2.1.3 TRIP ‘S2 Zurich 5 t’

181

Appendix ATools and Techniques for PRAand RAMs: A Primer

185

Appendix BDesign Guidelines for HazmatTransportation Decision Support Systems

191

Appendix CImplementation Guideline for HazmatTransportation DSS

200

Appendix DArriving at Equation for State of a Systemwith many Bi-stable Entities

212

Index

223