Fundamentals of Latex Film Formation - Processes and Properties

von: Joseph Keddie, Alexander F. Routh

Springer-Verlag, 2010

ISBN: 9789048128457 , 308 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 149,79 EUR

Mehr zum Inhalt

Fundamentals of Latex Film Formation - Processes and Properties


 

Preface

6

Contents

8

Symbols

14

Chapter 1

20

An Introduction to Latex and the Principles of Colloidal Stability

20

1.1 What is Latex?

20

1.2 Latex Synthesis and Uses

21

1.3 Historical Context and Economic Importance

27

1.4 Overview of the Film Formation Process

29

1.5 Environmental Legislation

34

1.6 Relevant Colloid Science

36

1.6.1 Interaction Potentials

36

1.6.1.1 Van der Waals Attraction

36

1.6.1.2 Electrostatic Repulsion Between Particles

37

1.6.1.3 DLVO Theory

38

1.6.1.4 Depletion Interactions

39

1.6.2 Fluid Motion

41

1.6.2.1 Diffusion

41

1.6.2.2 Low Shear Viscosity of Colloidal Dispersions

42

References

43

Chapter 2

46

Established and Emerging Techniques of Studying Latex Film Formation

46

2.1 Techniques to Study Latex in the Presence of Water (Wet and Damp Films)

47

2.1.1 Physical Probes of Drying

48

2.1.1.1 MFFT Bar

48

2.1.1.2 Film Scratching (Thin Film Analyser)

51

2.1.1.3 Gravimetry

51

2.1.1.4 Beam Bending (or Optical Cantilever) Technique

51

2.1.1.5 Ultrasonic Reflection

53

2.1.1.6 Electrical Conductivity

55

2.1.2 Specialist Electron Microscopies

55

2.1.2.1 Cryogenic Scanning Electron Microscopy

56

2.1.2.2 Environmental Scanning Electron Microscopy (ESEM)

56

2.1.2.3 Wet STEM

60

2.1.3 Scattering Techniques

61

2.1.3.1 Small Angle Neutron Scattering (SANS) and Small Angle X-Ray Scattering (SAXS)

61

2.1.3.2 Photo Correlation Spectroscopy, Diffusing Wave Spectroscopy, and Speckle Interferometry

63

2.1.3.3 Evanescent Dynamic Light Scattering

68

2.1.3.4 Ultramicroscopy and Confocal Microscopy

68

2.1.3.5 Optical Techniques: Transmission Spectrophotometry and Ellipsometry

69

2.1.4 Profiling Water and Particles with Spectroscopies

71

2.1.4.1 Confocal Raman Microscopy

71

2.1.4.2 IR Microscopy

72

2.1.4.3 NMR Profiling and Imaging

73

2.1.5 Probe Techniques for the Aqueous Environment

77

2.2 Techniques to Study Particle Packing and Deformation in Dry Films

80

2.2.1 Scanning Probe Microscopies

80

2.2.1.1 Contact Atomic Force Microscopy (AFM)

81

2.2.1.2 Intermittent Contact AFM and Phase Imaging

82

2.2.1.3 Electric Force Microscopy (EFM) and Scanning Electric Potential Microscopy (SEPM)

88

2.2.2 Scanning Near-Field Optical Microscopy (SNOM) and Shear Force Microscopy

89

2.2.3 Electron Microscopies

90

2.2.3.1 Transmission Electron Microscopy (TEM)

90

2.2.3.2 Scanning Electron Microscopy (SEM)

91

2.3 Techniques to Study Film Crosslinking

92

2.3.1 Ultrasonic Reflection and QCM

92

2.3.2 Spectroscopic Techniques

92

2.4 Techniques to Study Interdiffusion and Coalescence

93

2.4.1 Small Angle Neutron Scattering (SANS)

94

2.4.2 Fluorescence Resonance Energy Transfer (FRET)

95

2.4.2.1 Rate of Energy Transfer

95

2.4.2.2 Quantum Efficiency and Fraction of Mixing

97

2.4.3 Transmission Spectrophotometry

102

2.5 Concluding Remarks

102

References

102

Chapter 3

114

Drying of Latex Films

114

3.1 Humidity and Evaporation

114

3.1.1 Background

114

3.2 Evaporation Rate from Pure Water

115

3.3 Evaporation Rate from Latex Dispersions

117

3.4 Vertical Drying Profiles

118

3.4.1 Scaling Argument

120

3.4.2 Governing Equations

121

3.4.3 Experimental Studies

123

3.4.4 Consequence of Inhomogeneous Vertical Drying: Skin Formation

126

3.5 Horizontal Packing and Drying Fronts

126

3.5.1 Model for Horizontal Drying Fronts

129

3.5.2 Lapping Time and Open Time

130

3.6 Colloidal Stability

133

3.7 Film Cracking

135

3.7.1 Do the Cracks Follow the Drying Front or Propagate Quickly Over the Entire Film?

135

3.7.2 What Sets the Crack Spacing?

136

References

136

Chapter 4

140

Particle Deformation

140

4.1 Introduction

140

4.2 Driving Forces for Particle Deformation

141

4.2.1 Wet Sintering

142

4.2.2 Dry Sintering

142

4.2.3 Capillary Deformation

143

4.2.4 Capillary Rings

145

4.2.5 Sheetz Deformation

145

4.3 Particle Deformations

146

4.3.1 Hertz Theory – Elastic Spheres with an Applied Load

146

4.3.2 JKR Theory – Elastic Spheres with an Applied Load and Surface Tension

146

4.3.3 Frenkel Theory – Viscous Spheres with Surface Tension

147

4.3.4 Viscoelastic Particles

149

4.4 The Problem with Particle–Particle Approach

149

4.4.1 Routh and Russel Film Deformation Model

149

4.4.1.1 Particle–Particle Deformation

150

4.4.1.2 Integration to Film Deformation

150

4.4.1.3 Assumption of a Viscoelastic Fluid

151

4.5 Deformation Maps

152

4.5.1 Wet Sintering

152

4.5.2 Capillary Deformation

152

4.5.3 Dry Sintering

152

4.5.4 Receding Water Front

152

4.5.5 Use of the Deformation Maps

153

4.6 Dimensional Argument

154

4.6.1 Wet Sintering

154

4.6.2 Capillary Deformation

154

4.6.3 Dry Sintering

155

4.6.4 Sheetz Deformation

155

4.7 Effect of Temperature

156

4.8 Effect of Particle Size

158

4.9 Experimental Evidence for Deformation Mechanisms

159

4.9.1 Inferring Deformation Mechanisms from Water Distributions

159

4.9.2 Determination of Deformation Mechanisms Using an MFFT Bar and Optical Techniques

162

4.9.3 Microscopy of Particle Deformation

162

4.9.4 Scattering Techniques

165

4.9.5 Detection of Skin Formation

165

References

165

Chapter 5

170

Molecular Diffusion Across Particle Boundaries

170

5.1 Essential Polymer Physics

172

5.1.1 Interface Width at Polymer-Polymer Interfaces

172

5.1.2 Polymer Reptation

173

5.2 Development of Mechanical Strength and Toughness

177

5.2.1 Dependence on the Density of Chains Crossing the Interface

181

5.2.2 Dependence on Interdiffusion Distance, .

181

5.3 Factors that Influence Diffusivity

183

5.3.1 Molecular Weight and Chain Branching

183

5.3.2 Temperature Dependence

184

5.3.3 Influence of Hard Particles

187

5.3.4 Latex Particle Size

191

5.3.5 Particle Structure and Hydrophilic Membranes

191

5.4 Faster Diffusion with Coalescing Aids

193

5.5 Simultaneous Crosslinking and Diffusion: Competing Effects

194

References

198

Chapter 6

203

Surfactant Distribution in Latex Films

203

6.1 Introduction

203

6.1.1 Where Can Surfactant Go in a Dried Film?

204

6.1.2 Effect of Non-Uniform Surfactant Distributions

206

6.1.2.1 Gloss and Appearance

206

6.1.2.2 Aesthetic Qualities and Dirt Pick-Up

207

6.1.2.3 Adhesion and Viscoelasticity

208

6.1.2.4 Barrier Properties and Water Whitening

208

6.1.2.5 Film Formation Process

209

6.1.3 Mechanisms of Surfactant Transport

209

6.2 Adsorption Isotherms

210

6.3 Modelling of Surfactant Distribution during the Drying Stage

212

6.4 Effect of Surfactant’s Vertical Distribution on Film Topography

217

6.5 Experimental Evidence for Surfactant Locations

219

6.5.1 Interfaces with Air and Substrates

219

6.5.2 Surfactant in the Bulk of the Film

220

6.5.3 Depth Profiling and Mapping

220

6.6 Reactive Surfactants

222

6.6.1 Reactive Surfactant Chemistry

223

6.6.2 Effect of Surfmers on Film Properties

223

6.7 Summary

225

References

225

Chapter 7

231

Nanocomposite Latex Films and Control of Their Properties1

231

7.1 Introduction

231

7.1.1 Properties of Nanocomposites

232

7.1.2 Applications of Colloidal Nanocomposites

234

7.2 Types of Hybrid Particles

235

7.2.1 Polymer-Polymer Hybrid Particles

235

7.2.2 Inorganic and Polymer Nanocomposite Particles

237

7.2.3 ‘Self-Assembly’ of Nanocomposite Particles by Precipitation or Flocculation of Pre-Formed Nanoparticles

241

7.3 Colloidal Particle Deposition and Assembly Methods

243

7.3.1 Deposition Methods

245

7.3.2 Vertical Deposition

247

7.3.3 Surface Pattern-Assisted Deposition

248

7.3.4 Long-Range Order from Self-Assembled Core-Shell Particles

250

7.4 Colloidal Nanocomposites from Particle Blends

251

7.4.1 Advantages of Particle Blends

251

7.4.2 Dispersion of Nanoparticles

251

7.4.3 Long-Range Order in Particle Blends

253

7.5 Three Lessons about the Properties of Waterborne Nanocomposite Films

256

7.5.1 Lesson One

256

7.5.1.1 Percolation of Spherical Particles

257

7.5.1.2 Percolation of Rod-Like Particles

258

7.5.1.3 Properties in Percolating Systems

259

7.5.1.4 Properties of Hybrid and Blend Systems

260

7.5.2 Lesson Two

262

7.5.3 Lesson Three

263

References

267

Chapter 8

278

Future Directions and Challenges

278

8.1 Film Formation from Anisotropic Particles

278

8.2 Assembly of Particles over Large Length Scales

280

8.3 Technique Development

282

8.4 Nanocomposite Structure and Property Correlations

282

8.5 Interdiffusion of Polymers in Multiphase Particles

284

8.6 Templating Film Topography

285

8.7 Resolving the Film Formation Dilemma

286

References

289

Index

317