Bio-Medical CMOS ICs

Bio-Medical CMOS ICs

von: Hoi-Jun Yoo, Chris van Hoof

Springer-Verlag, 2010

ISBN: 9781441965974 , 526 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 149,79 EUR

Mehr zum Inhalt

Bio-Medical CMOS ICs


 

Preface

5

Contents

7

Contributors

9

1 Introduction to Bio-Medical CMOS IC

11

1.1 Introduction to Bio-Medical CMOSIC

11

1.2 Architecture of Sensor Systems with Bio-medical CMOS IC

13

1.3 Applications and Future Trends

16

1.4 Organization of the Book

18

References

19

Part I Vital Signal Sensing and Processing

20

2 Introduction to Bioelectricity

21

2.1 Introduction

21

2.2 Electrical Properties of the Human body

22

2.2.1 Cell Membrane

22

2.2.2 Membrane Potential

23

2.2.3 Equivalent Circuit Model for the Plasma Membrane

25

2.2.4 Graded Response of Membrane Potential

26

2.2.5 Action Potential

28

2.2.6 Synaptic Transmission

29

2.3 Equivalent Circuit Model of Tissues and Organs

31

2.4 Biomedical Devices

32

2.4.1 Electrocardiography

32

2.4.2 Electroencephalography

33

2.4.3 Electromyography

35

2.5 Current Research Trends in Biomedical Electrical Instruments

36

References

37

3 Biomedical Electrodes For Biopotential Monitoring and Electrostimulation

38

3.1 Introduction

38

3.2 Electrical Properties of Electrode-Skin Interface

41

3.2.1 The Electrode-Electrolyte Interface

41

3.2.1.1 The Electrode-Electrolyte Potential

41

3.2.1.2 The Electrode-Electrolyte Impedance

44

3.2.1.3 Complex Impedance Plot

46

3.2.1.4 Bode Plot

47

3.2.1.5 Polarization

49

3.2.1.6 Transient Response and Tissue Damage

51

3.2.1.7 Limit Voltages and Currents of Linearity

56

3.2.1.8 Electrode Metals

58

3.2.2 The Skin

61

3.2.2.1 Structure of the Skin

61

3.2.2.2 Electrical Properties of the Skin

62

3.2.2.3 The Skin's Parallel Capacitance, CSP

64

3.2.2.4 The Skin's Parallel Resistance, RSP

64

3.3 Electrode Design

73

3.3.1 External Biosignal Monitoring Electrodes

73

3.3.1.1 Historical Background

73

3.4 Modern Disposable Electrodes

78

3.5 Solid Conductive Adhesive Electrodes

81

3.6 Wearable Electrodes for Personalized Health

83

3.6.1 External Electrostimulation Electrodes

85

3.6.1.1 Historical Background

85

3.6.1.2 Current Density Considerations

89

3.6.1.3 Modern Electrode Designs

91

3.7 Implant Electrodes

98

3.7.1 Historical Background

99

3.7.2 Some Modern Electrode Designs

103

3.7.3 Microelectrodes

108

3.8 Electrode Standards

114

3.8.1 Standards for Biosignal Monitoring Electrodes

114

3.8.1.1 Standards for Disposable ECG electrodes. ANSI/AAMI EC 12 (2000)

114

3.8.2 Standards for Stimulation Electrodes

120

3.8.2.1 Standards for Automatic External Defibrillators and Remote-Control Defibrillators. ANSI/AAMI DF 80 (2003)

120

3.8.2.2 Standards for Electrosurgical Devices. ANSI/AAMI HF 18 (2001)

122

3.9 Summary

124

References

125

4 Readout Circuits

132

4.1 Introduction

132

4.2 Biopotential Acquisition

133

4.2.1 Biopotential Signals

133

4.2.2 Biopotential Electrodes

134

4.2.3 Interference Theory

136

4.2.4 Noise Considerations

138

4.3 How Application Affects the Choice of Instrumentation Amplifier Topology

139

4.4 Power Efficient Instrumentation Amplifier Topologies for Biopotential Signal Extraction

142

4.4.1 Limitations of Existing Off-the-shelf Instrumentation Amplifier Topologies

142

4.4.2 Instrumentation Amplifiers Utilizing Pseudo Resistors

144

4.4.3 Introduction to Chopper Modulation

146

4.4.4 Chopper Modulating Amplifiers for Biopotential Signal Extraction

149

4.4.5 Summary and Comparison of Topologies

151

4.5 Current Mode Instrumentation Amplifiers

154

4.5.1 Open-Loop Current Mode Instrumentation Amplifiers

154

4.5.2 Closed-Loop Current Mode Instrumentation Amplifiers (Current Balancing/Feedback Instrumentation Amplifiers)

155

4.5.3 Chopper Modulated Current Balancing Instrumentation Amplifiers

157

4.6 Examples of ICs for Biopotential Acquisition

158

4.7 Conclusion

160

References

160

5 Low-Power ADCs for Bio-Medical Applications

163

5.1 ADC Specifications

164

5.1.1 Ideal ADC Specifications

164

5.1.2 Practical ADC Specifications

165

5.1.3 ADC Implementation Issues

167

5.2 Charge-Sharing Successive Approximation ADCs

167

5.2.1 Basic Operation Principle

169

5.2.1.1 Input Sampling

169

5.2.1.2 Successive Approximation, MSB

170

5.2.1.3 Successive Approximation, MSB-1

171

5.2.1.4 Successive Approximation, Remaining Bits

171

5.2.1.5 First Block Diagram

172

5.2.2 Asynchronous Operation

173

5.2.3 Binary Scaled Capacitor Array

174

5.2.4 Comparator Noise

175

5.2.4.1 Comparator Offset

177

5.2.5 Implementation

177

5.3 Comparator-Based Asynchronous Binary Search ADCs

178

5.3.1 Operating Principle

179

5.3.2 Implemented Two-Step 1-b Coarse 6-b Fine Architecture

181

5.3.2.1 Clock Generation and A/D-Converter Timing

182

5.3.2.2 Dynamic Comparator with Embedded Threshold and Encoding

182

5.3.2.3 Passive Track-and-Hold

184

5.3.2.4 Feedback D/A Converter

186

5.3.2.5 Calibration

187

5.3.2.6 Power Breakdown

188

5.3.3 Experimental Results

188

5.3.3.1 Layout Implementation

188

5.3.3.2 Measurement Setup

190

5.3.3.3 Measurement Results

190

5.3.3.4 Sensitivity to Environmental Parameters

193

5.3.3.5 Energy Efficiency

193

5.3.4 Summary

195

5.4 Conclusions

195

References

195

6 Low Power Bio-Medical DSP

197

6.1 Introduction

197

6.2 ECG Signal Processor Design

198

6.2.1 Algorithm Overview

198

6.2.2 Hardware Implementation

199

6.3 Pre Processing

200

6.3.1 Filtering

201

6.3.2 Feature Extraction

201

6.3.3 ECG Skeleton

204

6.3.4 Segmentation Memory

208

6.4 Classification Processing

208

6.4.1 ECG Classification Algorithm

208

6.4.2 Micro Architecture of RISC

209

6.5 Post-processor

212

6.5.1 Huffman Coding

212

6.5.2 AES-128

214

6.6 Low Energy Techniques

215

6.6.1 Heterogeneous Processor Integration

215

6.6.2 Low Supply Voltage Operation

215

6.6.3 Segmentation-Based Pipelined Operation

217

6.6.4 Clock Gating

218

6.6.5 On-Chip Memory Reduction

218

References

220

Part II Bio-Medical Wireless Communication

222

7 Short Distance Wireless Communications

223

7.1 Introduction

223

7.2 Biomedical Telemetry Methods

224

7.2.1 Wave Propagation

224

7.2.1.1 EM Wave Propagation

225

7.2.1.2 Acoustic Wave Propagation

228

7.2.2 Conduction

229

7.2.3 Near-Field Coupling

229

7.2.3.1 Capacitive Links

230

7.2.3.2 Inductive Links

230

7.2.4 Near-Field versus Far-Field

231

7.3 Modulation Methods

232

7.3.1 Analog Modulation

233

7.3.1.1 AM

233

7.3.1.2 FM and PM

235

7.3.1.3 Discussion on Analog Modulation Methods

239

7.3.2 Analog Pulse Modulation Encoding

239

7.3.2.1 Pulse Amplitude Modulation (PAM)

240

7.3.2.2 Pulse Width/Duration Modulation (PWM or PDM)

241

7.3.2.3 Pulse Position Modulation (PPM)

241

7.3.2.4 Pulse Frequency Modulation (PFM)

241

7.3.2.5 Analog Multiple Channel Modulation Methods

242

7.3.3 Digital Pulse Modulation Encoding

243

7.3.3.1 Pulse Code Modulation (PCM)

243

7.3.3.2 Line Encoding

244

7.3.4 Digital Modulation

246

7.3.4.1 ASK

247

7.3.4.2 FSK

247

7.3.4.3 PSK

247

7.3.4.4 Digital Multiple Channel Transmission

248

7.3.5 Analog or Digital Modulation?

251

7.3.6 Data Rates

251

7.4 Compression

252

7.4.1 Loss-Less Compression Algorithms

253

7.4.2 Lossy Compression Algorithms

254

7.5 Error Correction

255

7.5.1 Block Codes

256

7.5.2 Convolutional Codes

257

7.6 Carrier Frequency Selection for RF Links

257

7.6.1 Tissue Absorption vs. Antenna Size

257

7.6.2 Antenna Size vs. Bandwidth Requirements

260

7.6.3 Regulations vs. Bandwidth Requirements

262

7.7 Biomedical Telemetry Applications

263

7.7.1 Physiological Monitoring

263

7.7.1.1 Bladder Pressure Monitoring

263

7.7.1.2 Wireless ECG Monitoring Integrated in Textile

263

7.7.1.3 Textile Integrated Breathing and ECG Monitoring System

265

7.7.1.4 Pacemaker Monitoring and Programming

265

7.7.1.5 Inductive Power and Data Transmission for Wireless Endoscopy

267

7.7.1.6 Wireless Capsule Endoscopy: Given Imaging Pillcam

267

7.7.2 Orthopedic Implant Monitoring and Control

267

7.7.2.1 Distraction Nail Driver

267

7.7.2.2 Hip Prosthesis Fixation Analysis

268

7.7.2.3 Telemetry IC Design for Orthopedic Monitoring

270

7.7.3 Nerve Implant Monitoring and Stimulation

272

7.7.3.1 Cochlear Implants

272

7.7.3.2 Retinal Prosthesis

273

7.7.4 General Monitoring and Identification

273

7.7.4.1 RFID

273

7.7.4.2 Portable Heart Rate Monitoring

273

7.7.5 Overview of Commercial Biomedical Transmitters

274

7.7.5.1 Zarlink ZL70101

274

7.7.5.2 Zarlink ZL70250

276

7.7.5.3 Nordic NR24L01+

276

7.7.5.4 Other Manufacturers

276

References

276

8 Bio-Medical Application of WBAN: Trends and Examples

282

8.1 The New Wave of Healthcare Systems

282

8.2 An Enabling Technology: Body Area Networks

283

8.3 Ambulatory Cardiac Monitoring

285

8.3.1 Trends

285

8.3.2 Snapshot on the State-of-the-Art

287

8.3.3 Detailed View on IMEC Low-Power Ambulatory ECG Prototypes

289

8.4 Wireless Sleep Monitoring

292

8.4.1 Trends

292

8.4.2 Snapshot on the State-of-the-Art

293

8.4.3 Detailed View on IMEC Wireless Sleep Staging Prototype

294

8.5 Mental Health and Emotion Monitoring

296

8.5.1 Trends

296

8.5.2 Snapshot on the State-of-the-Art

296

8.5.3 Detailed View on IMEC Wireless ANS Monitoring Prototype

297

8.6 Remaining Challenges

301

8.6.1 Ultra-Low-Power Technologies

301

8.6.2 Increasing Functionality

301

8.6.3 Autonomous Systems

302

8.6.4 Multi-Parameter Sensors

302

8.6.5 Dry Electrodes

302

8.6.6 Integration and Packaging Technology

303

8.7 Conclusions

303

References

304

9 Body Channel Communication for Energy-Efficient BAN

306

9.1 Introduction

306

9.1.1 Motivation

306

9.1.2 Human Body Communications

307

9.2 Channel Characteristics

308

9.3 Design of Wideband Signaling Communication Link

311

9.4 Wideband Signaling Transceiver

317

9.4.1 WBS Receiver AFE

322

9.4.2 All-Digital Quadratic Sampling CDR Circuit

325

9.4.3 Direct Digital Transmitter

327

9.5 Measurement Results

329

9.5.1 WBS Receiver AFE

329

9.5.2 WBS Transceiver

330

9.6 System Operation Demonstration

334

9.6.1 Introduction

334

9.6.2 Related Works

335

9.6.3 Design Architecture

335

9.6.4 Realization

336

9.6.4.1 Summary

338

9.7 Conclusion

338

References

338

Part III Examples of Bio-Medical ICs

340

10 Wearable Healthcare System

341

10.1 Introduction

341

10.1.1 Issues on Continuous Wearable Healthcare Using BSNs

342

10.1.2 Snapshots of Previous Works in Health Monitoring

343

10.1.3 An Example Wearable Healthcare System

345

10.2 Reliable and Low Cost BSN for Wearable Healthcare

345

10.2.1 Self-Configured Wearable BSN

345

10.2.2 Adaptive Power Transmission

348

10.2.3 Network Controller SoC

349

10.2.4 Summary

351

10.3 Fabric Circuit Board

351

10.3.1 Introduction

351

10.3.2 Dry Electrodes by P-FCB

352

10.3.2.1 Electrode Impedance

353

10.3.2.2 Impedance Versus Frequency

353

10.3.2.3 Impedance Over Time

353

10.3.3 Inductors by P-FCB

354

10.3.4 Summary

355

10.4 Wirelessly Powered Sensor

356

10.4.1 Introduction

356

10.4.2 Form Factor

356

10.4.3 Sensor Design

357

10.4.4 Wireless Power Transmission

358

10.4.4.1 Conventional Rectifier

359

10.4.4.2 Adaptive Threshold Rectifier (ATR)

360

10.4.5 Sensor Readout Front-End

361

10.4.6 Implementation

364

10.4.7 Summary

365

10.5 System Implementation

366

10.5.1 Wirelessly Powered Adhesive Bandage Sensor

366

10.5.2 Health Monitoring Chest Band

366

10.6 Conclusion

367

References

370

11 Digital Hearing Aid and Cochlear Implant

373

11.1 Introduction of the Digital Hearing Aid

373

11.1.1 Population Trends of the Hearing Aids

373

11.1.2 Future of the Hearing Aids

374

11.2 Conventional Digital Hearing Aids

375

11.2.1 Types of the Digital Hearing Aids

375

11.2.2 Design Issues of the Digital Hearing Aids

376

11.3 An Adaptive Digital Hearing Aid Chip with On Chip Human Factors Consideration

376

11.3.1 Introduction

376

11.3.2 An Internal Gain Verification Algorithm

378

11.3.2.1 Conventional Gain Verification Method

378

11.3.2.2 Autonomous Gain Verification Algorithm

379

11.3.2.3 Simulation Results

384

11.3.3 A Multi Mode Audio Processor

386

11.3.3.1 Hearing Aid Mode Operation

387

11.3.3.2 Smart Earphone Mode Operation

387

11.3.3.3 Direction Perception Mode Operation

388

11.3.4 Low Power Analog Front-End

389

11.3.4.1 System Design Considerations

389

11.3.4.2 Overall Architecture of the Analog Front-End

390

11.3.4.3 Adaptive Analog Front-End Design

391

11.3.4.4 Building Block Circuits Design

396

11.3.5 Low Power Digital Back-End

399

11.3.5.1 16 Channel IFIR DSP

399

11.3.5.2 Heterogeneous DAC

404

11.3.5.3 H-bridge as a Speaker Driver

406

11.3.6 Implementation and Measurement Results

406

11.3.7 Conclusions

412

11.4 Cochlear Implant

415

11.4.1 Introduction of the Cochlear Implant

415

11.4.2 Design of the Cochlear Implant

417

11.4.3 Future of the Cochlear Implant

419

References

419

12 Cardiac Rhythm Management ICs

422

12.1 Introduction

422

12.1.1 Anatomy of the Heart

422

12.1.2 Pacemakers

424

12.1.3 Implantable Cardioverter Defibrillators

424

12.2 Components of Pacemaker and ICD

425

12.2.1 Leads

425

12.2.2 Device Programmer

427

12.2.3 Device Subsystems

428

12.2.4 Case, Feedthrough and Header

428

12.2.5 Battery

429

12.2.6 ICD Capacitors

431

12.3 Electronics

432

12.3.1 Basic Pacemaker Functions

432

12.3.2 Sensing Circuits

433

12.3.3 ADC

434

12.3.4 Pace Driver and Mux

435

12.3.5 MCU

439

12.3.6 Sensor I/O

440

12.3.7 Telemetry

441

12.3.8 Clock Generator and Power Management

443

12.4 Basic ICD Functions

444

12.5 IC Process Technology

446

12.5.1 Process Technology

447

12.5.2 Low Power Design Techniques

448

12.6 Future Trends

450

References

451

13 Neurostimulation Design from an Energy and Information Transfer Perspective

453

13.1 Introduction

453

13.2 Overview of Challenges and System Requirements

454

13.3 Completing the Energy Transfer Circuit: From Battery to Body

456

13.3.1 Secondary Cell Recharge

457

13.3.2 Energy Source Characteristics

459

13.3.3 Boosting the Voltage---Providing Overhead for the Stimulation Engine

460

13.3.4 Generating the Stimulation Signal

463

13.3.4.1 Reference Current Generator

466

13.3.4.2 Active Sources and Sinks

466

13.3.4.3 Scaling Considerations for Electrode Sinks and Sources

468

13.3.4.4 Output Regulation with a Reference Resistor

469

13.3.4.5 Fractional Current Regulation Through Electrodes

471

13.3.4.6 Tying It All Together: A Complete Stimulation Engine

472

13.4 The Tissue Interface and General Safety Considerations

473

13.5 Future Directions and Trends

476

13.5.1 Closed-Loop, Adaptive Stimulation

476

13.5.2 Optogenetic Neuromodulation

477

13.6 Conclusion

479

References

479

14 Artificial Retina IC

481

14.1 Introduction

481

14.2 Fundamentals for Artificial Retina

482

14.2.1 Retina and Blindness

482

14.2.2 Principle of Artificial Retina

482

14.2.3 Classification of Artificial Retina

484

14.2.3.1 Extraocular Artificial Retina

484

14.2.3.2 Intraocular Artificial Retina

484

14.2.4 Artificial Retina System

485

14.3 Basic Circuits for Artificial Retina

487

14.3.1 Stimulation of Retinal Cells

488

14.3.2 Stimulator

488

14.3.2.1 Charge Balance

490

14.3.3 Photosensor

491

14.3.3.1 Photodiode

492

14.3.4 Photosensor Array in Artificial Retina IC

494

14.3.4.1 Micro PD Array

495

14.3.4.2 Active Pixel Sensor

496

14.3.4.3 Log Sensor

498

14.3.4.4 Photosensor Based on Pulse Frequency Modulation

500

14.3.5 Power and Data Transmission

504

14.4 Case studies: Artificial retina Device for over 1000 Electrodes

505

14.4.1 Multiple Microchip Architecture

505

14.4.1.1 Microchip Specification

506

14.4.1.2 Stimulator Specificaton

507

14.4.1.3 In vivo experiment

508

14.4.2 Multiple Microchip-Based Retinal Stimulator with Light-Controlled Function

510

References

511

Index

515