8.-10. Schuljahr

Stationenlernen

 Lineare
Funktionen

Darstellungen, Nullstellen, Steigungsdreiecke usw.

Mit Funktionendomino

Station

A1 Wertetabellen und Graphen	26	!	E	Geodreieck, Heft, Stift, Blatt
A2 Wertetabellen und Graphen	26	!	E	Geodreieck, Heft, Stift, Blatt
A3 Wertetabellen und Graphen	27	$!$	E	Geodreieck, Heft, Stift, Blatt
A4 Wertetabellen und Graphen	27	*	P	Geodreieck, Heft, Stift, Blatt
B1 Steigungsdreieck und Funktionsgleichung	28	!	E	Geodreieck, Heft, Stift, Blatt
B2 Steigungsdreieck und Funktionsgleichung	28	!	E	Geodreieck, Heft, Stift, Blatt
B3 Steigungsdreieck und Funktionsgleichung	29	!	E	Geodreieck, Heft, Stift, Blatt
B4 Steigungsdreieck und Funktionsgleichung	29	*	E	Geodreieck, Heft, Stift, Blatt
B5 Bestimmen von Funktionsgleichungen des Typs $y=m \cdot x$	30	$!$	E	Heft, Stift, Blatt
B6 Bestimmen von Funktionsgleichungen des Typs $y=m \cdot x$	30	*	P	Heft, Stift, Blatt
B7 Zeichnen von Graphen mithilfe von Steigungsdreiecken	31	!	E	Geodreieck, Heft, Stift, Blatt
B8 Zeichnen von Graphen mithilfe von Steigungsdreiecken	31	!	E	Geodreieck, Heft, Stift, Blatt
B9 Zeichnen von Graphen mithilfe von Steigungsdreiecken	32	$!$	E	Geodreieck, Heft, Stift, Blatt
B10 Zeichnen von Graphen mithilfe von Steigungsdreiecken	32	*	P	Geodreieck, Heft, Stift, Blatt
A5 Wertetabellen und Graphen	33	$!$	E	Geodreieck, Heft, Stift, Blatt
A6 Wertetabellen und Graphen	33	$!$	P	Geodreieck, Heft, Stift, Blatt
A7 Wertetabellen und Graphen	34	!	E	Geodreieck, Heft, Stift, Blatt
A8 Wertetabellen und Graphen	34	*	E	Geodreieck, Heft, Stift, Blatt
D1 Bestimmen der Schnittpunkte von Graphen mit der x-bzw. y-Achse	35	!	E	Geodreieck, Heft, Stift, Blatt
Bestimmen der Schnittpunkte von D2 Graphen mit der x - bzw. y-Achse	35	$!$	E	Geodreieck, Heft, Stift, Blatt
D3 Bestimmen der Schnittpunkte von Graphen mit der x - bzw. y-Achse	36	!	E	Geodreieck, Heft, Stift, Blatt
D4 Bestimmen der Schnittpunkte von Graphen mit der x - bzw. y-Achse	36	$!$	E	Geodreieck, Heft, Stift, Blatt

Station

B11 Bestimmen von Funktionsgleichungen des Typs $y=m \cdot x+b$	37	!	E	Heft, Stift, Blatt
B12 Bestimmen von Funktionsgleichungen des Typs $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{b}$	37	*	E	Heft, Stift, Blatt
B13 Bestimmen von Funktionsgleichungen des Typs $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{b}$	38	!	E	Heft, Stift, Blatt
B14 Bestimmen von Funktionsgleichungen des Typs $y=m \cdot x+b$	38	!	E	Heft, Stift, Blatt
B15 Steigungsdreieck und Funktionsgleichung	39	!	E	Geodreieck, Heft, Stift, Blatt
B16 Steigungsdreieck und Funktionsgleichung	39	!	E	Geodreieck, Heft, Stift, Blatt
B17 Steigungsdreieck und Funktionsgleichung	40	!	E	Geodreieck, Heft, Stift, Blatt
B18 Steigungsdreieck und Funktionsgleichung	40	*	E	Geodreieck, Heft, Stift, Blatt
B19 Sonderfälle $\mathrm{x}=\mathrm{abzw} . \mathrm{y}=\mathrm{b}$	41	!	E	Heft, Stift, Blatt
B20 Sonderfälle $\mathrm{x}=\mathrm{abzw} . \mathrm{y}=\mathrm{b}$	41	!	E	Geodreieck, Heft, Stift, Blatt
C1 Bestimmen von Funktionsgleichungen des Typs $y=m \cdot x$ bei gegebenem Punkt P	42	!	E	Geodreieck, Heft, Stift, Blatt
C2 Bestimmen von Funktionsgleichungen des Typs $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}$ bei gegebenem Punkt P	42	$!$	E	Geodreieck, Heft, Stift, Blatt
C3 Bestimmen von Funktionsgleichungen bei zwei gegebenen Punkten	43	$!$	E	Geodreieck, Heft, Stift, Blatt
C4 Bestimmen von Funktionsgleichungen bei zwei gegebenen Punkten	43	$!$	E	Geodreieck, Heft, Stift, Blatt
C5 Bestimmen von Funktionsgleichungen bei zwei gegebenen Punkten	44	$!$	E	Geodreieck, Heft, Stift, Blatt
C6 Bestimmen von Funktionsgleichungen bei zwei gegebenen Punkten	44	*	E	Geodreieck, Heft, Stift, Blatt
C7 Bestimmen von Funktionsgleichungen bei gegebener Steigung m und einem Punkt	45	$!$	E	Geodreieck, Heft, Stift, Blatt
C8 Bestimmen von Funktionsgleichungen bei gegebener Steigung m und einem Punkt	45	*	E	Geodreieck, Heft, Stift, Blatt
D5 Bestimmen von Funktionsgleichungen bei gegebenen Schnittpunkten der x - und y-Achse	46	$!$	E	Geodreieck, Heft, Stift, Blatt
D6 Bestimmen von Funktionsgleichungen bei gegebenen Schnittpunkten der x - und y -Achse	46	*	E	Geodreieck, Heft, Stift, Blatt
F1 Zeichnerische Überprüfung von Punkten, die auf einer Geraden liegen	47	!	E	Geodreieck, Heft, Stift, Blatt
F2 Rechnerische Überprüfung von Punkten, die auf einer Geraden liegen	47	!	E	Heft, Stift, Blatt

Station	Seite(n)	!/	E/P	benötigte Materialien
D7 Bestimmen von Funktionsgleichungen bei gegebenen Schnittpunkten der x - und y-Achse	48	!	E	Geodreieck, Heft, Stift, Blatt
D8 Zeichnerische Bestimmung der Schnittpunkte von Geraden mit der x - bzw. y -Achse	48	!	E	GeodreieckHeft, Stift, Blatt
F3 Ermitteln des x-Wertes bei gegebenem Funktionswert	49	!	E	Heft, Stift, Blatt
F4 Ermitteln des x-Wertes bei gegebenem Funktionswert	49	*	E	Heft, Stift, Blatt
B21 Ermitteln der y-Form und Zeichnen des Graphen	50	!	E	Geodreieck, Heft, Stift, Blatt
B22 Ermitteln der y-Form und Zeichnen des Graphen	50	*	E	Geodreieck, Heft, Stift, Blatt
E1 Zeichnerische Lösung linearer Gleichungssysteme	51	!	E	Geodreieck, Heft, Stift, Blatt
E2 Zeichnerische Lösung linearer Gleichungssysteme	51	!	E	Geodreieck, Heft, Stift, Blatt
E3 Zeichnerische Lösung linearer Gleichungssysteme	52	!	E	Geodreieck, Heft, Stift, Blatt
E4 Zeichnerische Lösung linearer Gleichungssysteme	52	!	E	Geodreieck, Heft, Stift, Blatt
Zeichnerische Lösung linearer Gleichungssysteme	53	!	E	Geodreieck, Heft, Stift, Blatt
E6 Zeichnerische Lösung linearer Gleichungssysteme	53	!	E	Geodreieck, Heft, Stift, Blatt
E7 Zeichnerische Lösung linearer Gleichungssysteme	54	!	E	Geodreieck, Heft, Stift, Blatt
E8 Zeichnerische Lösung linearer Gleichungssysteme	54	!	E	Geodreieck, Heft, Stift, Blatt
E9 Zeichnerische Lösung linearer Gleichungssysteme	55	!	E	Geodreieck, Heft, Stift, Blatt
E10 Zeichnerische Lösung linearer Gleichungssysteme	55	!	E	Geodreieck, Heft, Stift, Blatt
B23 Stückweise lineare Funktionen	56	\star	E	Geodreieck, Heft, Stift, Blatt
B24 Stückweise lineare Funktionen	56	\star	E	Geodreieck, Heft, Stift, Blatt
B25 Stückweise lineare Funktionen »Bewegungsaufgaben«	57	*	E	Geodreieck, Heft, Stift, Blatt
B26 Stückweise lineare Funktionen »Bewegungsaufgaben«	57	*	E	Geodreieck, Heft, Stift, Blatt
B27 Stückweise lineare Funktionen »Bewegungsaufgaben"	58	*	E	Geodreieck, Heft, Stift, Blatt
B28 Stückweise lineare Funktionen »Bewegungsaufgaben«	58	*	E	Geodreieck, Heft, Stift, Blatt
Tipp-Karten	59			

Anleitung

Sehr geehrte Kollegen und Kolleginnen,

dieses Werk zum Stationenlernen im Bereich Lineare Funktionen soll Ihnen ein wenig Ihre alltägliche Arbeit im Mathematikunterricht erleichtern. Die einzelnen Übungsstationen eignen sich sowohl für die Klassenstufen 8 als Lerneinstiegshilfe, sowie für spätere Klassen zur gezielten Wiederholung dieses prüfungsrelevanten Themenbereichs. Dabei war es uns besonders wichtig, dass wir die einzelnen Übungsaufgaben in unterschiedliche Übungsfelder A, B, C, D, E und F einteilen. Für jedes dieser sechs Übungsfelder stehen im hinteren Bereich des Heftes Tipp-Karten zur Verfügung. Die Reihenfolge der Stationen ist frei wählbar, so können die Schüler in ihrem individuellen Arbeits- und Lerntempo schüler- und handlungsorientiert vorgehen. Denn nur so kann Wissen langfristig gespeichert und wieder abgerufen werden. Durch den individuell ausfüllbaren Laufzettel wird bei dieser differenzierten Arbeitsform stets der Überblick gewahrt. Die Materialien eignen sich dank der möglichen Hilfestellungen durch die Tipp-Karten auch hervorragend für die Selbstlernzeit. Als didaktische Hilfestellung wurde eine Bastelanleitung für einen Funktionenschieber erarbeitet.

Ausführliche Erklärungen zum Thema und Handout für die Schüler:

In diesem Kapitel wird das komplexe Thema der linearen Zusammenhänge, sowie deren Berechnung und graphische Darstellung ausführlich und mit vielen Graphiken und Musterrechnungen erklärt. Im Anschluss daran befindet sich eine knappe Zusammenfassung, welche in Klassenstärke kopiert als Handout für die Schüler eingesetzt werden kann.

Bastelanleitung zum Funktionenschieber:

Der Funktionenschieber ist eine Möglichkeit, dem Schüler den linearen Zusammenhang bildlich vorstellen zu können. Einmal gebastelt, lässt sich der Funktionenschieber auch gut archivieren und jederzeit wieder einsetzen. Er kann sowohl aus Folie erstellt und somit für den Einsatz am Over Head Projektor genutzt werden, als auch in Klassenstärke kopiert und gemeinsam gebastelt werden.

Stationen:

Die Übungsaufgaben auf den einzelnen Stationskarten enthalten zwar eine Nummerierung, können aber dennoch flexibel eingesetzt werden. Jeder Schüler kann selbst entscheiden, welche Stationen er bearbeiten möchte. Dies können beispielsweise lediglich Übungsaufgaben aus einem Themenbereich sein, ebenso gut können jedoch auch Aufgaben aus allen Bereichen vermischt werden. Die Karten lassen sich auch beliebig umnummerieren, wenn den Schülern dadurch die Zuordnung erleichtert wird.

Grund- und Expertenaufgaben:

Innerhalb der Bereiche gibt es Grundaufgaben, die mit einem Ausrufezeichen markiert sind und Expertenaufgaben, die mit einem Stern gekennzeichnet sind. Die Grundaufgaben sollen von allen Schülern bearbeitet werden. Schwächere Schüler können hier auf die Tipp-Karten A - F zurückgreifen. Die Expertenaufgaben enthalten vertiefende oder weiterführende Inhalte. Je nach Leistungsstand Ihrer Klasse können Sie jedoch problemlos Stationsaufgaben anders kennzeichnen.

Anleitung

Tipp-Karten:

Wie bereits erwähnt gibt es für die sechs Themenbereiche Tipp-Karten. Es empfiehlt sich, die Tipp-Karten z. B. in Briefumschlägen verpackt den Stationen beizulegen oder sie sogar an einem separaten Ort zu platzieren. So überlegen die Kinder eher, ob sie einen Tipp benötigen oder nicht und werden nicht so stark dazu verleitet, aus Bequemlichkeit einen Blick darauf zu werfen.

Lösungen:

Wer die Aufgaben der Schüler korrigiert, hängt zum einen von der Lerngruppe und zum anderen von den Vorlieben des unterrichtenden Lehrers ab. So kann dieser die Verbesserung der Schüleraufgaben selbst übernehmen, oder diese Aufgabe in die Verantwortung der Kinder übergeben. Unter jeder Aufgabenkarte ist die entsprechende Lösungskarte angebracht. Alle Karten können laminiert und entsprechend verteilt werde. Alternativ können Sie die Seiten jedoch auch kopieren und die Lösungen, für die Schüler erkenntlich markiert, an einem passenden Ort positionieren oder nachreichen.

Stationen-Laufzettel:

Der Stationen-Laufzettel ist so konzipiert, dass die Lehrkraft oder die Schüler die Themenbereiche A bis F sowie die entsprechend nummerierten Übungsaufgaben eintragen.
Die Kinder haken dann ab, wenn sie eine Station erledigt haben. Ein weiterer Haken wird gesetzt, wenn die Station korrigiert wurde.

Lineare Funktionen Domino

Dieses Dominospiel besteht aus 40 Spielkarten, die auf Karton kopiert, ausgeschnitten und gegebenenfalls laminiert werden. Gespielt werden kann es von 2-4 Spielern. Jeder Mitspieler erhält 5 Karten, die restlichen verbleiben als versteckter Stapel auf dem Tisch. Bestimmt wer beginnen darf und spielt anschließend Reihum. Dabei wird stets versucht, rechts oder links an den Graphen/die Funktionsgleichung „anzudocken". Wem dies nicht gelingt, muss eine Karte vom Stapel nehmen, bis dort keine mehr sind. Gewonnen hat, wer als erster Spieler alle Karten richtig angelegt hat.

Symbole:

Grundaufgabe

Stift/Bleistift

Expertenaufgabe

Blatt Papier

Einzelaufgabe

Partneraufgabe

Nach dieser kurzen Einführung wünscht Ihnen viel Spaß beim Einsatz der Materialien Ihr Kohl-Verlag

Werden verschiedene Größenbereiche zueinander in Beziehung gesetzt, so entstehen Zuordnungen, die man in Tabellen, Diagrammen oder sogenannten Graphen im Koordinatensystem darstellen kann.

Beispiele:

1. Die Grafik zeigt die Wachsamkeitskurve von Mäxchen Müd während eines ganz normalen Schultages von $8.00 \mathrm{~h}-13.30 \mathrm{~h}$.

2. In der Tabelle sind die Daten zu den angebotenen und nachgefragten Ausbildungsplätzen in der Bundesrepublik von 1992-1997 gegeben. Anhand einer Darstellung im Koordinatensystem lassen sich die zeitlichen Entwicklungen gut vergleichen.

Jahr	1992	1993	1994	1995	1996	1997
Angebotene Ausbildungsplätze	721825	655857	621992	616988	609289	634800
Nachgefragte Ausbildungsplätze	608190	587879	586810	597736	612800	634900

