ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Jakob Flore

Optimierung der Genauigkeit fünfachsiger Werkzeugmaschinen

Optimierung der Genauigkeit fünfachsiger Werkzeugmaschinen

Optimization of the Accuracy of Five-Axis Machine Tools

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Jakob Flore

Berichter:

Univ.-Prof. Dr.-Ing. Christian Brecher Univ.-Prof. Dr.-Ing. Hans-Christian Möhring

Tag der mündlichen Prüfung: 17. Oktober 2016

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Jakob Flore

Optimierung der Genauigkeit fünfachsiger Werkzeugmaschinen

Herausgeber: Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. F. Klocke Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 35/2016

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Jakob Flore:

Optimierung der Genauigkeit fünfachsiger Werkzeugmaschinen

1. Auflage, 2016

Gedruckt auf holz- und säurefreiem Papier, 100% chlorfrei gebleicht.

Apprimus Verlag, Aachen, 2016 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

Printed in Germany

ISBN 978-3-86359-482-4

D 82 (Diss. RWTH Aachen University, 2016)

Danksagung

Die vorliegende Arbeit entstand neben meiner Tätigkeit als wissenschaftlicher Mitarbeiter im Bereich Produktionsmaschinen am Fraunhofer -Institut für Produktionstechnologie IPT in Aachen.

Mein Dank gilt meinem Doktorvater Herrn Univ.-Prof. Dr.-Ing. Christian Brecher für die wissenschaftliche Betreuung und das mir entgegengebrachte Vertrauen bei der Erstellung dieser Arbeit. Ebenso danke ich Herrn Univ.-Prof. Dr.-Ing. Hans-Christian Möhring für die Übernahme des Korreferats. Bei Herrn Univ.-Prof. Dr.-Ing. Hubertus Murrenhoff bedanke ich mich für die Übernahme des Prüfungsvorsitzes.

Die Entstehung dieser Arbeit wurde insbesondere durch das Umfeld am Fraunhofer IPT begünstigt. Mein persönlicher Dank gilt daher allen Mitarbeitern, die in vielfältiger Weise direkt oder indirekt einen Beitrag zum Gelingen dieser Arbeit geleistet haben. Besonders hervorheben möchte ich die Herren Dominik Lindemann, Christoph Baum, Dr.-Ing. Chris-Jörg Rosen, Dr.-Ing. Andreas Sobotka und Dr.-Ing. Philipp Kolb. Die gemeinsame Zeit am Fraunhofer IPT war fachlich und menschlich stets sehr bereichernd. Bei den Herren Dr.-Ing. Christian Buß, Dr.-Ing. Roland Tücks und Michel Klatte möchte ich mich nicht nur für die eingehende fachliche Durchsicht der Arbeit und die wertvollen Anregungen bedanken, sondern insbesondere auch für die zahlreichen wissenschaftlichen und nicht-wissenschaftlichen Diskussionen. Ganz besonderer Dank gebührt Herrn Jürgen Clemens für seine engagierte Unterstützung bei der Ausarbeitung der mathematischen Lösungen. Ohne sein Zutun wäre diese Arbeit vermutlich nicht zustande gekommen. Herrn Simon Charlier danke ich für seine motivierte praktische Unterstützung der messtechnischen Untersuchungen. Mein Dank gilt zudem Herrn Christian Radermacher für seine Mitarbeit als wissenschaftliche Hilfskraft bei der Grundsteinlegung dieser Arbeit. Besonders schön zu sehen ist es. wenn das Ergebnis jahrelanger kräftezehrender Arbeit nicht in den Archiven lagert, sondern weiterlebt und Nutzen stiftet. Daher möchte ich Herrn Jan Behrens nicht nur für die vielen Diskussionen während der Entstehung der Arbeit danken, sondern insbesondere auch dafür, dass er die Inhalte aktiv weiterentwickelt und anwendet.

Herrn Dr.-Ing. Christian Wenzel danke ich neben der finalen Durchsicht des Manuskripts für die großzügigen Freiräume zur Gestaltung des Themenbereichs der messtechnischen Maschinenuntersuchung sowie für das mir entgegengebrachte Vertrauen bei der Leitung zahlreicher Industrie- und Forschungsprojekte.

Besonderer Dank gebührt meinen Eltern Anne und Carl Flore. Sie standen mir in allen Lebenssituationen immer mit Rat und Tat zur Seite und haben mich auf meinem Lebensweg stets bedingungslos unterstützt, ermutigt und gefördert.

Schließlich danke ich von ganzem Herzen meiner lieben Frau Natalie und meiner Tochter Frieda, die nicht nur durch ihre Unterstützung und den Verzicht auf viele gemeinsame Stunden einen großen Beitrag zu dieser Arbeit geleistet haben.

Inhaltsverzeichnis

Content

1	Einl	eitung.		1
2	Star	nd der T	echnik in Wissenschaft und Industrie	7
	2.1	Fünfac	hsige Werkzeugmaschinen zur Fräsbearbeitung	8
		2.1.1	Kinematischer Aufbau fünfachsiger Werkzeugmaschinen	8
		2.1.2	Kinematik der fünfachsigen Simultanbearbeitung	9
	2.2	Masch	inentechnische Einflüsse auf die Fertigungsgenauigkeit	10
	2.3	Modell	ierung des geometrischen Maschinenverhaltens	14
		2.3.1	Arten geometrischer Achsfehler	14
		2.3.2	Mathematische Beschreibung der Achsfehler	16
		2.3.3	Volumetrischer Fehler von Mehrachsmaschinen	19
	2.4	Messte	echnische Kalibrierung von Fünfachsmaschinen	21
		2.4.1	Messmittel zur Kalibrierung	22
		2.4.2	Messprozesse und Verfahren der Datenauswertung	24
		2.4.3	Kalibrierung durch Prüfwerkstücke	31
		2.4.4	Einfluss von Unsicherheiten auf die Kalibrierung	32
	2.5	Steuer	ungstechnische Optimierung der Maschinengenauigkeit	33
	2.6	Zusam	menfassende Bewertung	37
3	Aufg	gabenst	ellung und Zielsetzung	39
4	Mod	ellierur	ngssystematik für Fünfachsmaschinen	41
	4.1	Grundl	agen der Modellierungssystematik	41
		4.1.1	Modellierung einzelner Bewegungsachsen	42
		4.1.2	Modellierung von Mehrachsmaschinen	47
	4.2	4.1.2 Exemp	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen	47 53
	4.2	4.1.2 Exemp 4.2.1	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch	47 53 54
	4.2	4.1.2 Exemp 4.2.1 4.2.2	Modellierung von Mehrachsmaschinen larische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf	47 53 54 55
	4.2 4.3	4.1.2 Exemp 4.2.1 4.2.2 Volume	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung	47 53 54 55 56
5	4.2 4.3 Proz	4.1.2 Exemp 4.2.1 4.2.2 Volume	Modellierung von Mehrachsmaschinen larische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit	47 53 54 55 56 61
5	4.2 4.3 Proz 5.1	4.1.2 Exemp 4.2.1 4.2.2 Volume cess zur	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses	
5	4.2 4.3 Proz 5.1 5.2	4.1.2 Exemp 4.2.1 4.2.2 Volume cess zur Grundl Ausarb	Modellierung von Mehrachsmaschinen Jarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien	
5	4.2 4.3 Proz 5.1 5.2	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien Ableitung und Abgrenzung der Strategien	47 53 54 55 61 61 63 65
5	4.2 4.3 Proz 5.1 5.2	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1 5.2.2	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien Ableitung und Abgrenzung der Strategien Sensitivitätsanalyse zur Ermittlung der Dominanzen	47 53 54 55 61 61 63 65 66
5	4.2 4.3 Proz 5.1 5.2	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1 5.2.2 5.2.3	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses Ableitung und Abgrenzung der Strategien Sensitivitätsanalyse zur Ermittlung der Dominanzen Formulierung der Optimierungsstrategien	47 53 54 55 61 61 63 65 66 75
5	4.2 4.3 Proz 5.1 5.2	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1 5.2.2 5.2.3 Ausarb	Modellierung von Mehrachsmaschinen larische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien Ableitung und Abgrenzung der Strategien Formulierung der Optimierungsstrategien Formulierung der Optimierungsstrategien	
5	4.2 4.3 Proz 5.1 5.2 5.3	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1 5.2.2 5.2.3 Ausarb 5.3.1	Modellierung von Mehrachsmaschinen Jarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien Ableitung und Abgrenzung der Strategien Formulierung der Optimierungsstrategien Formulierung der Optimierungsstrategien Formulierung der Optimierungsstrategien Grundlegendes Verfahrens	47 53 54 55 61 61 63 65 66 75 78 79
5	4.2 4.3 Proz 5.1 5.2 5.3	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1 5.2.2 5.2.3 Ausarb 5.3.1 5.3.2	Modellierung von Mehrachsmaschinen Jarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Fünfachsmaschine mit Gabelkopf etrischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien Ableitung und Abgrenzung der Strategien Formulierung der Optimierungsstrategien Formulierung der Optimierungsstrategien peitung des Kalibrierverfahrens Grundlegendes Verfahrenskonzept Auswahl und Integration eines geeigneten Messmittels	
5	4.2 4.3 Proz 5.1 5.2 5.3	4.1.2 Exemp 4.2.1 4.2.2 Volume Grundl Ausarb 5.2.1 5.2.2 5.2.3 Ausarb 5.3.1 5.3.2 5.3.3	Modellierung von Mehrachsmaschinen Iarische Modellierung fünfachsiger Werkzeugmaschinen Fünfachsmaschine mit Dreh-Schwenk-Tisch Erischer Fehler bei der Simultanbearbeitung r Steigerung der Maschinengenauigkeit egendes Konzept des Optimierungsprozesses beitung von Optimierungsstrategien Ableitung und Abgrenzung der Strategien Sensitivitätsanalyse zur Ermittlung der Dominanzen Formulierung der Optimierungsstrategien Sensitivitätsanalyse zur Ermittlung der Dominanzen Formulierung der Optimierungsstrategien Meitung des Kalibrierverfahrens Grundlegendes Verfahrenskonzept Mathematisches Verfahren zur Fehleridentifikation	47 53 55 61 61 63 65 66 75 78 79 81 84

6	Dem	onstrator zur Qualifizierung	93			
	6.1	3D Tastkopf	93			
	6.2	Werkzeugmaschine zum fünfachsigen Simultanfräsen	95			
	6.3	Qualifizierung von Demonstrator und Modell	96			
7	Qua	lifizierung der Optimierungsstrategien	99			
	7.1	Vorgehensweise zur Qualifizierung	99			
	7.2	Qualifizierung durch Simulation der Maschinengenauigkeit	.104			
		7.2.1 Gestaltung, Durchführung und Auswertung der Simulation	.104			
		7.2.2 Ergebnisse der simulativen Qualifizierung	.105			
	7.3	Qualifizierung durch Messung der Maschinengenauigkeit	.108			
		7.3.1 Gestaltung, Durchführung und Auswertung der Messung	.108			
		7.3.2 Ergebnisse der messtechnischen Qualifizierung	.109			
	7.4	Qualifizierung durch Fertigung von Prüfwerkstücken	.112			
		7.4.1 Gestaltung, Fertigung und Auswertung der Prüfwerkstücke	.112			
		7.4.2 Ergebnisse der Qualifizierung durch Prüfwerkstücke	.116			
	7.5	Abschließende Bewertung der Qualifizierung	.118			
8	Qua	Qualifizierung des Kalibrierverfahrens				
	8.1	Analyse der Parameter des Kalibrierverfahrens	.121			
		8.1.1 Systematik der Analyse	.122			
		8.1.2 Festlegung des Spline-Grads	.125			
		8.1.3 Kalibriergenauigkeit in Abhängigkeit der Messdatenmenge	.126			
		8.1.4 Kalibriergenauigkeit in Abhängigkeit der Knotenzahl	.129			
		8.1.5 Kalibriergenauigkeit in Abhängigkeit der Messkugelpositionen	.130			
		8.1.6 Fazit der Analyse	.131			
	8.2	Beeinflussung des Verfahrens durch Unsicherheit	.133			
		8.2.1 Einfluss der Unsicherheiten der Verfahrensparameter	.133			
		8.2.2 Einfluss der Unsicherheiten der Messdaten	.135			
	8.3	Exemplarische Anwendung des Kalibrierverfahrens	.136			
	8.4	Potenziale zur Verfahrensoptimierung	.138			
	8.5 9.6	Abschließende Bewertung des Kalibrierverrahrens	141			
	0.0	Handlungsemplemung zur Optimierung der Genauigkeit	. 143			
9	Zusa	ammenfassung und Ausblick	.145			
	9.1	Zusammenfassung	.145			
	9.2	Ausblick	.147			
10	Lite	aturverzeichnis	.151			

II

Abkürzungen und Formelzeichen

Abbreviations and Formula Symbols

Abkürzungen

Abkürzung	Bedeutung
1D	Eindimensional
2D	Zweidimensional
3D	Dreidimensional
A	Auswertung
bzw.	beziehungsweise
DIN	Deutsches Institut für Normung
EF	Exemplarische(r) Fehler
FB	Fehlerbudget
GK	Gabelkopf
HSK	Hohlschaftkegel
HTM	Homogene Transformationsmatrizen
ISO	International Organisation for Standardization
К	Korrektur
KMG	Koordinatenmessgerät
KOS	Koordinatensystem
КТ	Korrekturtabelle
Μ	Messung
max	Maximum
Mes.	Messung
MKS	Maschinenkoordinatensystem
NC	Numerical Control
Nr.	Nummer
OF	Originäre(r) Fehler
PW	Prüfwerkstück
RLF	Rotatorischer Lagefehler
rot.	Rotatorisch
Sim.	Simulation

Sp	Spindel
SpK	Spindelkasten
TCP	Tool Center Point
TMP	Teilmessprozesse
trans.	Translatorisch
V	Vorbereitung
VCS	Volumetric Compensation System
vgl.	vergleiche
WKS	Werkstückkoordinatensystem
WS	Werkstück
WST	Werkstücktisch
WZ	Werkzeug
z. B.	Zum Beispiel

Griechische Großbuchstaben

Symbol	Einheit	Bezeichnung
Δ	μm	Volumetrischer Fehler zwischen Werkzeug und Werkstück
∆(Eij,n,m)	μm	Differenz der durch den Fehler Eij verursachten volumetrischer Fehler zwischen Punkt p_n und p_m im Werkstückkoordinatensystem bei simultaner Achsbewegung
$\Delta(p_n)$	μm	Volumetrischer Fehler am Punkt pn
$\Delta(p_n, w)$	μm	Gemessener volumetrischer Fehler an Punkt $\ensuremath{p_n}$ und zu Wiederholung w
$\Delta(x,y,z,a,c)$	μm	Positionsabhängiger volumetrischer Fehler
$\Delta_{C}(c)$	μm	Volumetrischer Fehler des Punktes P _C
$\Delta_{Cabyxz,WKS}(p_n), \\ \Delta_{byxzCA,WKS}(p_n)$	μm	Volumetrischer Fehler im Werkstückkoordinatensys- tem am Punkt pn bei simultaner Achsbewegung und Maschinenkinematik CAbYXZ, bYXZCA
$\Delta_{bYXZCA}(x,y,z,a,c)$	μm	Volumetrischer Fehler zwischen Werkzeug und Werkstück der Maschinenkinematik bYXZCA
$\Delta_{CAbYXZ}(x,y,z,a,c)$	μm	Volumetrischer Fehler zwischen Werkzeug und Werkstück der Maschinenkinematik CAbYXZ

$\Delta_{CAbYXZ,Sim}(p_n)$	μm	Volumetrischer Fehler der Maschinenkinematik CAbYXZ am Punkt p_{n} der simultaner Achsbewegung
$\Delta_{ extsf{CAbYXZ,Sim}}$, $\Delta_{ extsf{bYXZCA,Sim}}$	μm	Volumetrischer Fehler der Maschinenkinematik CAbYXZ, bYXZCA bei simultaner Achsbewegung
$\Delta_{CAbYXZ,WKS,Eij}(p_n)$	μm	Volumetrischer Fehler im Werkstückkoordinatensystem am Punkt $p_{\mbox{\scriptsize n}}$ durch den Fehler Eij bei simultaner Achsbewegung
$\Delta_{M,OF}(p_n)$	μm	Gemessener und durch originäre Achsfehler verur- sachter volumetrischer Fehler am Punkt pn
$\Delta_{M,OF+EF}(p_n)$	μm	Gemessener und durch originäre sowie exemplari- sche Achsfehler verursachter volumetrischer Fehler am Punkt pn
$\Delta_{\max}, \ \Delta_{\max}(KT_i), \ \Delta_{\max}(Eij)$	μm	Maximale vektorielle Differenz der volumetrischen Fehler im Werkstückkoordinatensystem (in Abhän- gigkeit des Kompensationstabelle i), (durch den Feh- ler Eij)
$\Delta_{\text{p0,x}}, \Delta_{\text{p0,y}}, \Delta_{\text{p0,z}}$	μm	Komponenten des volumetrischen Fehlers am Start- punkt der simultanen Achsbewegung
$\Delta_{S,EF}(p_n)$	μm	Simulierter und durch exemplarische Achsfehler verursachter volumetrischer Fehler am Punkt $\ensuremath{p_n}$
$\Delta_{Sim}(p_n)$	μm	Volumetrischer Fehler am Punkt p _n bei simultaner Achsbewegung
$\Delta_{\text{Sim},\text{EF}}(p_n)$	μm	Volumetrischer Fehler durch exemplarische Achs- fehler am Punkt p _n bei simultaner Achsbewegung
$\Delta_{Sim, EF+OF}(p_n)$	μm	Volumetrischer Fehler durch exemplarische und ori- ginäre Achsfehler am Punkt pn bei simultaner Achs- bewegung
$\Delta_{Sim,OF}(p_n)$	μm	Volumetrischer Fehler durch originäre Achsfehler am Punkt p_n bei simultaner Achsbewegung
$\Delta_{Sim,WKS}(p_n)$	μm	Volumetrischer Fehler im Werkstückkoordinatensystem am Punkt p_n bei simultaner Achsbewegung
$\Delta_{WKS}(n,m)$	μm	Differenz der volumetrischen Fehler der Punkte n und m im Werkstückkoordinatensystem
∆ _{wĸs} (n,m,Eij)	μm	Differenz der volumetrischen Fehler der Punkte n und m im Werkstückkoordinatensystem auf Grund des Fehlers Eij
Δ_{WS}	μm	Werkstückseitiger Anteil des volumetrischen Fehlers

$\Delta_{\sf WZ}$	μm	Werkzeugseitiger Anteil des volumetrischen Fehlers
$\Delta_X, \Delta_Y, \Delta_Z$	μm	Komponenten des volumetrischen Fehlers
$\Delta_X(x)$	μm	Volumetrischer Fehler durch die Fehler der X-Achse, volumetrischer Fehler des Punktes P_{X}
$\Delta_{XY}(x,y)$	μm	Volumetrischer Fehler des Punktes P_{Y} im Inertialsystem der X-Achse
$\Delta_{XYZ}(x,y,z)$	μm	Volumetrischer Fehler einer dreiachsigen Maschine
$\Delta_{XYZCA}(x,y,z,c,a)$	μm	Volumetrischer Fehler einer fünfachsigen Maschine

Griechische Kleinbuchstaben

Symbol	Einheit	Bezeichnung
$\delta_{\text{Eij,I-V}}$	-	Mittelwert der relativen Abweichungen zwischen identifiziertem und vorgegebenem Achsfehler Eij
$\delta(p_n,w)$	μm	Abweichung des gemessenen volumetrischen Fehlers am Punkt p_n und zu Wiederholung w zum Mittelwert
$\delta_{\text{EF}}(p_n),$	μm	Abweichung zwischen simuliertem und gemessenem volumetrischen Fehler am Punkt $\ensuremath{p_n}$
$\begin{split} &\delta_{EF,x}(p_n), \delta_{EF,y}(p_n), \\ &\delta_{EF,z}(p_n) \end{split}$	μm	Komponenten der Abweichung zwischen simuliertem und gemessenem volumetrischen Fehler am Punkt $\ensuremath{p_n}$
$\delta_{R}(x)$	μm	Verlagerung durch die rotatorischen Komponenten- fehler der X-Achse
δ_{R}	μm	Verlagerung durch die rotatorischen Lagefehler
$\delta_{R,A}(x)$	µrad	Rotationsmatrix des Fehlers EAX
$\delta_{R,B}(x)$	µrad	Rotationsmatrix des Fehlers EBX
$\delta_{R,C}(x)$	µrad	Rotationsmatrix des Fehlers ECX
$\begin{split} & \delta_{\text{R},\text{ABC}}(x), \\ & \delta_{\text{R},\text{ABC}}(y), \\ & \delta_{\text{R},\text{ABC}}(z), \\ & \delta_{\text{R},\text{ABC}}(a), \\ & \delta_{\text{R},\text{ABC}}(c) \end{split}$	μrad	Rotationsmatrix der rotatorischen Komponentenfeh- ler der X-, Y-, Z-, A- und C-Achse
$\begin{array}{l} \delta_{\text{R},\text{X}}, \delta_{\text{R},\text{Y}}, \delta_{\text{R},\text{Z}}, \\ \delta_{\text{R},\text{A}}, \delta_{\text{R},\text{C}} \end{array}$	µrad	Rotationsmatrix der rotatorischen Lagerfehler der X-, Y-, Z-, A-, C-Achse
$\delta_{\text{R},XX}$	µrad	Rotationsmatrix des Fehlers A0X
$\delta_{\text{R},\text{XY}}$	µrad	Rotationsmatrix des Fehlers B0X

$\delta_{\text{R},\text{XZ}}$	µrad	Rotationsmatrix des Fehlers C0X
$\delta_{R,XYZ}$	µrad	Rotationsmatrix der rotatorischen Lagefehler der X-, Y und Z-Achse
$\delta_{R,x\text{-}y}(x)$	μm	Verlagerung durch die rotatorischen Komponenten- fehler der X-Achse in der X-Y-Ebene
$\delta_{R,x\text{-}z}(x)$	μm	Verlagerung durch die rotatorischen Komponenten- fehler der X-Achse in der X-Z-Ebene
$\delta_{R,y\text{-}z}(x)$	μm	Verlagerung durch die rotatorischen Komponenten- fehler der X-Achse in der Y-Z-Ebene
$ \begin{split} & \delta_T(x), \delta_T(y), \delta_T(z), \\ & \delta_T(a), \delta_T(c) \end{split} $	μm	Vektor der translatorischen Komponentenfehler der X-, Y-, Z-, A- und C-Achse
$\begin{array}{l} \delta_{T,X}, \delta_{T,Y}, \delta_{T,A},\\ \delta_{T,C} \end{array}$	μm	Vektor der translatorischen Lagefehler der X-, Y-, A- und C-Achse
$\begin{array}{l} \delta_x(p_n,w), \ \delta_y(p_n,w), \\ \delta_z(p_n,w) \end{array}$	μm	Komponenten der Abweichung des gemessenen volumetrischen Fehlers am Punkt p_{n} und zu Wiederholung w
φ	0	Winkel zwischen Werkzeugachse und Werkstück- oberfläche

Lateinische Großbuchstaben

Symbol	Einheit	Bezeichnung
A0C, B0C	µrad	Rechtwinkligkeitsfehler zwischen C- und Y-Achse, zwischen C- und X-Achse
A0Z, B0Z	µrad	Rechtwinkligkeitsfehler zwischen Z- und Y-Achse, zwischen Z- und X-Achse
B0A, C0A	µrad	Rechtwinkligkeitsfehler zwischen A- und Z-Achse, zwischen A- und Y-Achse
B0X, C0X	µrad	Rechtwinkligkeitsfehler zwischen X- und Z-Achse, zwischen X- und Y-Achse
D	-	Anzahl Messwerte je Messpunkt
DW ^A (Eij), DW ^B (Eij), DW ^C (Eij), DW ^D (Eij)	-	Dominanzwert eines Fehlers Eij auf Basis der Opti- mierungsstrategie A, B, C, D
$D_{k,g}(t)$	-	Wert der Basisfunktion vom Grad g und zu Knoten k an der Stelle t
E(p _n)	μm, μrad	Vektor der Achsfehlerwerte am Punkt pn

Eff	-	Verhältnis der relativen Änderung der Genauigkeit zur relativen Menge der korrigierten Fehler
Eij _{EF}	μm, μrad	Exemplarischer Achsfehler
Eij _{EF,I}	μm, μrad	Identifizierter, exemplarischer Achsfehler
Eijı	μm, μrad	Identifizierter Achsfehler
Eij∨	μm, μrad	Vorgegebener Achsfehler
Eij _g (t)	μm, μrad	Achsfehler in Spline-Darstellung
E _M	μm, μrad	Vektor der Achsfehlerwerte zu allen Messpunkten
E _{M,Spline}	μm, µrad	Vektor der Achsfehlerwerte in Spline-Darstellung zu allen Messpunkten
En	μm, μrad	Vektor der Achsfehlerwerte
EAX, EBX, ECX	µrad	Rotatorischer Fehler der X-Achse um die X-Achse, um die Y-Achse, um die Z-Achse
EAY, EBY, ECY	µrad	Rotatorischer Fehler der Y-Achse um die X-Achse, um die Y-Achse, um die Z-Achse
EAZ, EBZ, ECZ	µrad	Rotatorischer Fehler der Z-Achse um die X-Achse, um die Y-Achse, um die Z-Achse
EAA, EBA, ECA	µrad	Positionierfehler der A-Achse, Taumelfehler der A- Achse um die Y-Achse, Taumelfehler der A-Achse um die Z-Achse
EAC, EBC, ECC	µrad	Taumelfehler der C-Achse um die X-Achse, Taumel- fehler der C-Achse um die Y-Achse, Positionierfehler der C-Achse
EXX, EYX, EZX	μm	Positionsfehler, Geradheitsfehler in Y-Richtung, Ge- radheitsfehler in Z-Richtung der X-Achse
EXY, EYY, EZY	μm	Geradheitsfehler in X-Richtung, Positionsfehler, Geradheitsfehler in Z-Richtung der Y-Achse
EXZ, EYZ, EZZ	μm	Geradheitsfehler in X-Richtung, Geradheitsfehler in Y-Richtung, Positionsfehler der Z-Achse
EXA, EYA, EZA	μm	Axiallauffehler, Exzentrizitätsfehler in Y-Richtung, Exzentrizitätsfehler in Z-Richtung der A-Achse
EXC, EYC, EZC	μm	Exzentrizitätsfehler in X-Richtung, Exzentrizitätsfeh- ler in Y-Richtung, Axiallauffehler der A-Achse
F	-	Anzahl Achsfehler
F _C	Ν	Prozesskraft
H _k	μm, μrad	Wert des Kontrollpunktes zu Knoten t_k

H _k (Eij)	μm, μrad	Wert des Kontrollpunktes von Fehler Eij zu Knoten $t_{k} % \left({{{\mathbf{x}}_{k}}} \right)$
L	-	Einheitsmatrix
I _C ^{6→0} (c)	mm	Ist-Position des Punktes P_C im Inertialsystem
I _{bYXZCA} (x,y,z,a,c)	mm	Ist-Position des durch L _{WZ} beschriebenen Punktes im Maschinenkoordinatensystem
I _{CA} (a,c)	mm	Ist-Position des durch L _{WS} beschriebenen Punktes im Maschinenkoordinatensystem
${I_X}^{6 \rightarrow 0}(x), \ I_X(x)$	mm	Ist-Position des Punktes P_X im Inertialsystem
l _Y (y)	mm	Ist-Position des Punktes P_{Y} im Inertialsystem der Y-Achse
I _{XY} (x,y)	mm	Ist-Position des Punktes P_{Y} im Inertialsystem der X-Achse
$I_{YXZ}(x,y,z)$	mm	Ist-Position des durch L _{WZ} beschriebenen Punktes im Maschinenkoordinatensystem
К	-	Konditionszahl
K _x , K _y , K _z	mm	Korrekturwerte für die X-, Y- und Z-Achse
K(x,y,z,a,c), K(n)	mm	Positionsabhängiger, punktabhängiger Korrekturvektor
K _{EXX} (x), K _{EYY} (y), K _{EZZ} (z), K _{EXA} (a)	mm	Korrekturvektor für den Fehler EXX, EYY, EZZ, EXA
$K_{X},K_{Y},K_{Z},K_{A},K_{C}$	-	Anzahl der Knoten der X-, Y-, Z-, A- und C-Achse
L	mm	Wirksamer Hebel
Lc	mm	Exemplarischer Vektor im lokalen Koordinatensys- tem des Rotors der C-Achse
L _{A-WZ}	mm	Vektor zwischen der Werkzeugspitze und dem Rota- tionszentrum der A-Achse
L _{ws}	mm	Vektor des werkstückseitigen Referenzpunkts
L _{wz}	mm	Vektor des werkzeugseitigen Referenzpunkts
L(x), L(x,y,z)	mm	Hebel der rotatorischen Komponentenfehler
$L_0(x),L_0(x,y,z)$	mm	Hebel der rotatorischen Lagefehler
L _X , L _Y	mm	Exemplarischer Vektor im lokalen Koordinatensystem des Schlittens der X-, Y-Achse
Mĸ	-	Menge der korrigierten Achsfehler

MA _M	μm/μm, μm/μrad	Koeffizientenmatrizen des Maschinemodells zu allen Messpunkten
$MA_{M,Spline}$	μm/μm, μm/μrad	Koeffizientenmatrizen des Maschinemodells zu allen Messpunkten bei Berücksichtigung der Spline- Darstellung
MA(p _n)	μm/μm, μm/μrad	Koeffizientenmatrix des Maschinemodells zu Punkt Pn
MA _n	μm/μm, μm/μrad	Maschinenmodell zu Punkt n
ME _M	-	Koeffizientenmatrix des Messmittelmodells
MEn	-	Messmittelmodell zu Punkt n
MW _M	μm	Vektor der Messwerte zu allen Messpunkten
MWn	μm	Messwertvektor zu Punkt n
N	-	Anzahl Punkte
N _C	-	Anzahl Schritte der C-Achse
N _N	-	Anzahl der paarweisen Kombinationen der erfassten volumetrischen Fehler
$N_{\text{R,A}}(a), N_{\text{R,C}}(c)$	-	Matrix der nominellen Rotation des Rotors der A- und C-Achse
$N_{T,X}, N_{T,Y}, N_{T,A}, N_{T,C}$	mm	Nomineller Positionsvektor der X-, Y-, A- und C- Achse
N _{T,A,x} , N _{T,A,y} , N _{T,A,z} , N _{T,C,x} , N _{T,C,y} , N _{T,C,z}	mm	Komponenten des nominellen Positionsvektors der A- und C-Achse
$N_T(x), N_T(y), N_T(z)$	mm	Vektor der nominellen Positionen des Schlittens der X-, Y- und Z-Achse
P(p _n)	mm	Position der Bohrung zu Punkt pn
P _C	mm	Durch den Vektor L _C repräsentierter Punkt auf dem Rotor der C-Achse
P _{OF}	mm	Position der Bohrung bei originären Achsfehlern
P _{OF+EF}	mm	Position der Bohrung bei originären und exemplari- schen Achsfehlern
$P_{R,S,WS}(p_n)$	mm	Soll-Position des Werkstückreferenzpunktes am Punkt pn
$P_{\text{R},\text{S},\text{WZ}}(p_n)$	mm	Soll-Position des Werkzeugreferenzpunktes am Punkt p_n

P _X	mm	Durch den Vektor L _x repräsentierter Punkt auf dem Schlitten der X-Achse
P _Y	mm	Durch den Vektor Ly repräsentierter Punkt auf dem Schlitten der Y-Achse
RB	μm, μrad	Vektor der Randbedingungen der Achsfehler
R _{XY}	mm	Radius der Ausgleichsbewegung in der X-Y-Ebene
R _{YZ}	mm	Radius der Ausgleichsbewegung in der Y-Z-Ebene
R _{WS,XY}	mm	Radiale Komponente des Werkstückvektors
S	-	Anzahl zu ermittelnder Achsfehlerwerte
Ŝ	μm, μrad	Differenz zwischen maximalem und minimalem Feh- lerwert
S ^{Eij} cadyxz	μm/μm, μm/μrad	Sensitivität des Fehlers Eij in der Maschinenkinema- tik CAbYXZ
$S_{C}^{6 \rightarrow 0}(c)$	mm	Soll-Position des Punktes P_C im Inertialsystem
S _{bYXZCA} (x,y,z,a,c)	mm	Soll-Position des durch L_{WZ} beschriebenen Punktes im Maschinenkoordinatensystem
S _{CA} (a,c)	mm	Soll-Position des durch L_{WS} beschriebenen Punktes im Maschinenkoordinatensystem
$S_X^{6 \rightarrow 0}(x)$	mm	Soll-Position des Punktes P_X im Inertialsystem
S _{XY} (x,y)	mm	Soll-Position des Punktes P _Y im Inertialsystem der X-Achse
S _{YXZ} (x,y,z)	mm	Soll-Position des durch L_{WZ} beschriebenen Punktes im Maschinenkoordinatensystem
т	-	Anzahl aller Knoten aller Fehler
T ₁ , T _n	К	Temperaturen
T(x), T(y), T(z), T(a), T(c)	μm, μrad	Homogene Transformationsmatrix der Komponen- tenfehler der X-, Y-, Z-, A- und C-Achse
T _X , T _Y , T _Z , T _A , T _C	μm, μrad	Homogene Transformationsmatrix der Lagefehler der X-, Y-, Z-, A- und C-Achse
U	μm, μrad	Unsicherheit
U(Eijı)	μm, μrad	Unsicherheit des identifizierten Fehlers Eij
UD	μm	Unsicherheit der Messdatenerfassung
U(x)	μm, μrad	Unsicherheit an der Stelle x
U _{KMG}	μm	Wiederholpräzision des Koordinatenmessgeräts