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Preface

In clinical application we deal with problems that have to be solved in a fast and
objective way. However, human observation is influenced by internal (coming
form the observer) as well as external (often independent from the observer) im-
pacts. The objectivity of classification is restricted by the receptivity of human
senses which are influenced by the experiences or level of training, psycholog-
ical conditions (tiredness, haste, etc.), as well as external conditions (lighting,
destructive noise, etc.) A failure in perception questions the entire recognition
process. The recognition process itself, influenced also by the above mentioned
conditions, may cause a slowdown and/or lead to a false diagnosis.

New computerized approaches to various problems have become critically
important in healthcare. Computer assisted diagnosis has been extended to-
wards a support of the clinical treatment. Mathematical information analysis,
computer applications together with medical equipment and instruments have
become standard tools underpinning the current rapid progress with developing
Computational Intelligence. We are witnessing a radical change as technologies
have been integrated into systems that address the core of medicine, including
patient care in ambulatory and in-patient setting, disease prevention, health pro-
motion, rehabilitation and home care. A computerized support in the analysis
of patient information and implementation of a computer aided diagnosis and
treatment systems, increases the objectivity of the analysis and speeds up the
response to pathological changes.

This book aims to present a variety of state-of-the-art information technology
and its applications to the networked environment to allow robust computerized
approaches to be introduced throughout the healthcare enterprise. Image and
signal analysis are the traditional parts that deal with the problem of data pro-
cessing, recognition and classification. Bioinformatics has become a dynamically
developed field of computer assisted biological data analysis. Patients’ safety and
shortening of the rehabilitation time requires a more rapid development of min-
imally invasive surgery supported by image navigation techniques. Home care,
remote rehabilitation assistance, safety of the elderly require new areas to be
explored in telemedicine and telegeriatrics.

This book set is a continuation of a book series. This set contains two volumes.
Information Technologies in Biomedicine, Volume 3 discusses Image analysis
techniques and their applications in healthcare, as well as some Bioinformatics
issues. Information Technologies in Biomedicine, Volume 4 consists of six parts
including Computer Aided Surgery, Telemedicine, Telegeriatrics,

We would like to express our gratitude to the authors who contributed their
original research papers as well as the reviewers for their valuable comments.

Ewa Pietka
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Part I

Image Analysis and
Applications



Applications of Ray-Casting in Medical Imaging

Maciej Borzęcki1, Adam Skurski1, Marek Kamiński1, Andrzej Napieralski1,
Jarosław Kasprzak2, and Piotr Lipiec2

1 Department of Microelectronics and Computer Science, Lodz University
of Technology, Łódź, Poland

mborzecki@dmcs.pl
2 Department of Cardiology, Medical University of Lodz, Łódź, Poland

Abstract. The authors present applications of ray casting as segmen-
tation and analysis method for processing of medical imaging data. The
first application features ray casting based image segmentation for ex-
traction of a region enclosing heart structures from a series of CT scans.
Proposed method yields significant gains in reduction of the data set size,
that are of importance in applications such as Transesophageal USG sim-
ulations on mobile devices or web platforms.

Another application, utilizes ray casting determining location of char-
acteristic points of left ventricle (LV). The points are used as reference
during automatic fusion of ECHO Automated Function Imaging output
with a 3D model of LV.

Keywords: ray casting, image segmentation, computed tomography.

1 Introduction

Ray casting is a method that has seen wide use in a plethora of applications
in different fields. Object picking within a 3D scene or collision detection are
examples of traditional uses of ray casting [1, 2]. The method has also been suc-
cessfully applied in the field of image processing for segmentation and extraction
purpose. Example applications as described in [3, 4], indicate a level of success
when method is applied for segmentation of medical imaging.

The core idea behind use of ray casting in image segmentation or feature
location is largely unchanged from the typical approach. Virtual rays are emit-
ted in a number of directions from a single origin point. For each iteration, a
boundary condition is evaluated, indicating whether for the current location of
the tip of the ray, the propagation can continue. In case of image segmentation,
the boundary condition is typically a function testing if given point is within the
desired data set. The concept is briefly visualized in Fig. 1.

Once the points where the ray propagation has ceased are established further
steps are taken in order to create a mask or an outline of the identified structure.
Typically employed methods are neighbor contour tracing [5] or construction of
polygon by connecting the end points.

E. Pietka, J. Kawa, and W. Wieclawek (eds.), Information Technologies in Biomedicine, 3
Volume 3, Advances in Intelligent Systems and Computing 283,
DOI: 10.1007/978-3-319-06593-9_1, c© Springer International Publishing Switzerland 2014



4 M. Borzęcki et al.

Fig. 1. Ray casting for image segmentation

Fig. 2. Ray casting within a convex shape

Ray casting as a method is a subject to a number of problems that need to
tackled with. The first problem is the shape of the object under consideration.
As shown in Fig. 2, convex shapes usually yield good results.

For concave shapes, such as one shown in Fig. 3, location of ray origin point
poses a problem. Misplaced origin will amplify the shadowing, the effect of which
needs to be taken into consideration.

If the structure being extracted is relatively large, one needs to consider how
many rays need to cast in order to obtain a reasonably good set of points for
analysis. The problem is caused by the fact that only a certain number of rays
is practical for most applications. In case of image segmentation, too few points
may negatively affect the process of establishing object contour.

In the following sections the authors discuss ray casting as a method for
processing medical imaging data, where Section 2 describes application in im-
age segmentation, and Section 3 covers automated location of features in a 3D
model.
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Fig. 3. Ray casting origin location for concave shapes

2 Heart Region Extraction for USG Simulations

The problem of ultrasound simulation has gained wide interest starting from fun-
damental work based on physical models [6], towards medical applications such
as [7, 8]. With advent of cheap, multi-core processing the simulation algorithms
have been successfully applied for GPGPU as in [9] and [10]. At the same time
new simplified, but effective, processing algorithm such as [11] were proposed.
Applications such as [12, 13] conform to the trend of utilizing simulations as a
training tool in medicine that right now is considered a necessity [14, 15].

Simulation of Transesophageal Echocardiography commonly makes use of
medical imaging collected during patient examination. A TEE simulator applies
online algorithms transforming an input data set obtained in CT examination
into a simulated USG image. This section discussed a ray casting based input
data preprocessing method that provides a significant size reduction of the input
data.

Given the physical properties of the USG imaging, the input needs to con-
tain only the heart image and the position of the esophagus. Neighboring organs
can be discarded without losing the educational value of the program. A raw
data set of size 1-2GB is common for CT scans of a chest. Inclusion of temporal
information, so that depiction of heat’s cycle is possible, increases it’s size sig-
nificantly. Reduction of the input set size enables latency and processing limited
applications to gain wider use.
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The authors propose a ray-casting based method for segmentation of CT
scan image and Region of Interest (ROI) extraction for the purpose of TEE
simulation [16]. The method is based on generation of ROI mask for each of the
relevant images in the input data set. The next step is superpositioning of all the
masks, so that an aggregate mask enclosing all identified ROIs is obtained. The
aggregation step allows for generating a 3D volume that is effectively encloses
only the data that is relevant for the simulation process. The process is shown
in Fig. 4.

Fig. 4. Processing pipeline - segmentation of CT scan series, preparation of aggregate
mask, ROI volume extraction

The concept for heart image segmentation is presented in Fig. 5. The thresh-
old condition for ray propagation is set such that the ray should stop at the
pericardium.

Fig. 5. Heart muscle outline using ray casting

A simple heuristic is used for selection of the origin point based on locating the
center of mass of the image. Presence of contrast agent results in areas filled by
blood exhibiting higher pixel values in CT images. Heart structures - ventricles,
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atria, muscle tissue are thus well visible. Given that, the center of mass will be
found inside the area enclosed by heart. The resulting position for 2 samples is
shown in Fig. 6.

Fig. 6. Ray origin positioning

The threshold value for attenuation was empirically found to be 20HU and
roughly corresponds to the values expected for area occupied muscle tissue. The
value was confirmed by examining a number of data sets, however all images were
obtained using the same CT device. The authors strongly suggest to perform
additional verification and examine data collected using a particular CT scanner.
The Hounsfield value is converted to pixel brightness based on metadata stored
in DICOM [17, 18]. Lower values indicate lower measured attenuation, most
likely the ray has entered pericardial cavity or lungs.

The result of ray casting is shown in Figure 7(b). One can clearly observe that
at the sides, most of the rays stopped at pericardium, mainly due to the large
difference in pixel intensity, and thus attenuation, between lungs and heart.
However in anterior and posterior regions, the rays propagated farther than
desired.

The boundary condition may not be met as the intensity level at the position
where the ray propagation should cease is higher than expected. This may be
caused by too large ray increase step, amplified by deficiency of the imaging
method or existence tissue with similar properties in direct neighborhood. This
problem of mask leakage can be limited by post processing ray casting points.

The heart can be considered to have a smooth surface, hence any abrupt
changes in ray length are improbable and indicate mask leakage. The problem is
displayed in Fig. 8. Significant change in ray length is visible both at the center
and at the edges of the graph correspond to rays propagating towards ribs at the
top and towards aorta at the bottom in Fig. 7(b). Application of a median filter
with empirically selected window length alleviates the problem. The resulting
ray lengths are shown in Fig. 8 using dashed line. The final shape of the mask
obtained in segmentation process is displayed in Fig. 7(c).

Evaluation has been performed by verifying if the resulting masks completely
enclose outlines of most significant heart regions (ventricles, atria, pericardium).
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(a) Original image (b) Ray casting

(c) Mask after ray filtering (d) Masked input image

Fig. 7. Segmentation using ray casting

0 10 20 30 40 50
100

120

140

160

180

200

220

240

260

280

Original length

Filtered, order 9

Fig. 8. Consecutive ray lengths from Fig. 7(b) (starting at bottom center, counter-
clockwise), before and after filtering
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For this purpose a test data with an outline of heart muscle was prepared.
The obtained segmentation masks, were then verified to completely contain the
reference regions. The graph showing comparison of the obtained mask to the
reference area is shown in Fig. 9.

0 50 100 150 200 250 300 350 400
0.00

0.05

0.10

0.15

0.20

0.25

Single mask

Aggregate mask

Fig. 9. Measured reference area not included in the mask, relative to mask size

There is a clear difference between the results for individual mask and an
aggregate mask. Clearly, single masks have disadvantage in case the ray casting
process failed to perform segmentation correctly. However, as assumed previ-
ously, the effect is compensated by use of aggregate mask. For all of reference
samples, the missing area is below 5% of the mask size. Further analysis revealed
that the missing area is at the edge of pericardium and does not impede the fi-
nal outcome of the segmentation process. It may be expected that inclusion of
a dilation step will yield an improvement and cover the missing regions.

After compression the original data set size has been reduced by factor of 18.
Further steps that employed ray casting for image segmentation and extraction
of the region of interest resulted in another size reduction by a factor of 2.5. Thus
a single slice stored in 16-bit PNG format has been downsized to 50kB of data.
At the same time the region that needs to be processed during the simulation
pass has been marked and reduced significantly, as the relative area occupied by
the heart is at most, less than 40% of a single horizontal slice.

3 Automated Identification of Left Ventricle
Characteristic Points

Fusion of medical data is a widely regarded practice that aims at improving the
diagnostic value individual imaging methods by providing a combined interpre-
tation, thereby revealing indirectly visible aspects of the medical data.
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Fusion of morphological data obtained in CT and functional information from
SPECT (perfusion at rest and stress) allows for comprehensive evaluation of lo-
cation and severity of ischemia, thereby increasing the diagnostic and prognostic
value of noninvasive imaging techniques [19, 20].

Another application of ray casting plays a significant step in a fusion of ECHO
AFI (Automated Function Imaging) [21] output with a 3D model of LV[22].
Combination of a bull’s-eye representation of LV [23] stretched on a 3D mesh
extracted from a series of CTA (CT Angiography) scans is vital from diagnostic
point of view. The method may lower the need for performing classical, invasive
angiography or can augment the analysis and interpretation of unclear CTA
results. The result of the fusion process is presented in a single view, where the
measured LV function is correlated spatially with a 3D model of LV [22].

Successful fusion requires knowledge of characteristic points on the left ven-
tricle that allow for proper positioning of the bull’s-eye diagram as a texture.
Given the spatial reference of bull’s-eye diagram, at least three distinct points
need to be found on a 3D mesh. Apex and two additional points at the base of
LV, near interventricular septum, were identified as sufficient, see Figure 10.

Fig. 10. Characteristic points of left ventricle: apex, two points at the base, near in-
terventricular septum

A 3D mesh, automatically extracted by CT software does not directly contain
the required information. The authors propose a ray-casting based method for
location of two characteristic points at the base of LV, both points marked in
Figure 10 with blue and green markers.

Each of the points if found by evaluating the conditions that refer to the
locality of certain features in the 3D mesh.

The blue marker is found by iteratively casting rays, while rotating towards
the back of the heart, and measuring distance between pericardium and LV wall.
With each iteration, the distance is compared with previous value. Conducted
analysis showed that at least 25% increase in distance is a sufficient estimate.
Once, the condition has been met, the characteristic point is known to be located
at the previous ray position.
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The green marker is found using a similar approach. However, the distance
is measured between the wall of LV and aortic sinus. The point of interest is
located on the ray for which distance measurement was the smallest.

The concept is visualized in Figure 11.

Fig. 11. Locating points of interest (marked with dashed circle) using ray casting

Presented implementations of modified ray-casting method for tracking LV
anatomical points of interest provide the opportunity to define a constellation
of markers essential for the images fusion performance, presented on Fig. 12.

Fig. 12. Fusion of 3D model of LV with ECHO

4 Improvements

While ray casting as algorithm do not provide room for improvement, the respec-
tive implementations can be enhanced for greater performance. The algorithm
may be easily extended to support a multi-threaded implementation. An inher-
ent data level parallelism allows for work partitioning at the input image level.
Lack of dependency between respective rays, allow an approach like in Fig. 13.
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The profiling analysis revealed that a large portion of execution time is spent in
the process of ray casting, with only little time allocated to ray length filtering,
which is a sequential process. Thus, according to Amdahl’s law [24, 25], split-
ting of ray casting task between a number of threads should yield a considerable
speedup.

Fig. 13. Parallel ray casting implementation

Another improvement that is possible to apply is to exploit the aliasing effect
of the ray propagation near the origin. The input image, as indicated in the
introductory section, has a limited resolution. If a large number of rays is used,
each ray will, at least for a certain length, starting from the origin, trace the same
path as it’s neighbors. The authors propose a use of a look-up table, addressed
by coordinates of each pixel. The table would hold a binary flag indicating if a
pixel was already claimed by a ray. Since all rays are checked against the same
boundary condition, the flag allows for pixels that were already tested to be
skipped.

5 Conclusions

The authors have presented two successful applications of ray casting for pro-
cessing of medical imaging data. Although the core method is well known, it’s
application and enhancements proposed by authors bring a deal of novelty.

Application of ray casting in the segmentation process, although already pro-
viding good results, still needs some improvement. It has been observed that for
certain samples, not all of the reference area is included within the segmentation
mask. Especially at points where transition between pericardium to lungs ap-
pears, the segmentation process may partially fail, with ray not propagating far
enough. It is expected that the problem can be easily addressed with a dilation
step, however this would result in unnecessary increase of the whole mask.
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Ray casting implementation for locating characteristic points of LV is a part
of software package for supporting CAD (coronary artery disease) diagnosis.
Purpose of presented algorithm is to prepare mapping for final texturing step
in a fully automated manner. Should the algorithm fail or yield inadequate re-
sults, the operator has a possibility to move the markers freely, using the found
positions as starting points. Tests in clinical environment using non-pathologic
samples are in progress and show promising results. Still the authors have not
yet verified the performance of the algorithm in case the input data set contains
anomalies such as hypertrophy of the left ventricular wall.
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Abstract. Nowadays, vascular diseases are the most challenging health
problems in developed countries. Despite the fast development of modern
contrast-enhanced Computed Tomography (CT), providing complex 3D
datasets, the tremendous amount of problems still remain unsolved. The
vascular segmentation as well as registration techniques are the topics
of past and on-going research activities. In this work we focus on an ab-
dominal aortic aneurysm registration technique. The developed approach
makes it possible to match all voxels belonging to the aorta from pre-
and post-operative CT data. The presented technique is based on aorta
lumen segmentation and graph matching method. To segment the lumen
area a hybrid level-set active contour approach is used. The matching
step is performed based on a path similarity skeleton graph matching
procedure. The registration results have been tested on the database of
8 patients, for which two different contrast-enhanced CT series were ac-
quired. All registration results achieved with our system and verified by
an expert prove the efficiency of the approach and encourage to further
develop this method.

Keywords: Hybrid Level-Set Active Contour, Graph Matching, Image
Registration, Skeletonization.

1 Introduction

Nowadays, vascular diseases belong to the most challenging health problems in
developed countries. An abdominal aortic aneurysm (AAA), addressed in our
approach, is a dilated and weakened segment of the abdominal aorta. It is an
abnormal ballooning of the abdominal portion of the aorta, that occurs as a
consequence of aortic medial degeneration and can break open causing death.
An AAA can develop in anyone, however it is mostly seen in males over 60, hav-
ing one or more risk factors. During last 30 years, the occurrence of AAA has
increased threefold. To prevent from rupturing, interventional radiologists offer
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minimally invasive treatment for abdominal aortic aneurysm, which is specially
important when it reaches 5 centimeters in diameter. Currently, there are dif-
ferent AAA treatment options. The open surgical repair by a vascular surgeon
is the most commonly used for a large, unruptured aneurysm. The less invasive
and relatively new technique, eliminating the need for a large abdominal incision,
is placing a graft within the aneurysm. It redirects blood flow and stops direct
pressure from being exerted on the weak aortic wall [2, 1]. An exemplary 3D
volume rendering of CTA series of pre- and post-operative study created using
Osirix software is shown in Fig. 1.

Fig. 1. 3D volume rendering of CTA series of pre- (left) and post-operative (right)
study of aortic aneurysm provided by Osirix software

The AAA is mostly diagnosed by a physical examination as a soft mass in the
abdomen. For more accurate and efficient diagnosis the development of imaging
techniques provides numerous tools used to examine vessels and display their
details. A contrast-enhanced CT angiography (CTA), which replaced a conven-
tional angiogram, is an imaging technique commonly used in vascular diagnosis.
Despite the fast development of modern contrast-enhanced Computed Tomogra-
phy (CT), providing complex 3D datasets, the tremendous amount of problems
still remain unsolved. The vascular segmentation [3] and registration techniques
are the topics of past as well as on-going research activities.

From the medical background of AAA, two region of interests: aorta lumen
and thrombus, can be defined. An exemplary manual segmentation results of
both of them in a CT scan are shown in Fig. 2. The newest approaches in AAA
segmentation [3, 5, 6] address either both of the problems or only a chosen one.
An automated method for the segmentation of thrombus in abdominal aortic
aneurysms from CTA data is presented in [5]. The Active Shape Model (ASM)
fitting is performed in sequential slices. As the starting point for the analysis
the results obtained for the adjacent slice are used. The full 3D segmentation
technique in CTA is reported in [6]. The system analyses both global features,
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incorporating a priori knowledge of the intensity, volume, and shape of the aorta
and other structures, and the local information like voxel location, intensity,
and texture information. All of them are used for training and driving a sup-
port vector machine classifier. As reported in [3] the current state of the art in
AAA segmentation is modelling, feature analysis or their combination, and in all
these areas different efficient techniques can be found. However, the authors also
claim, that there are some problems, which still remain unsolved. There is no
standardly accepted databases and validation criteria for most vascular segmen-
tation applications and the direct performance comparisons of the segmentation
results have not been performed yet.

Fig. 2. An example of an contrast-enhanced CT scan of an abdominal aortic aneurysm
with segmented thrombus (outer green contour) and lumen (inner red contour)

Despite the fact that the segmentation of vascular structures is valuable for
diagnosis assistance, treatment and surgery planning the currently developed
computer aided diagnosis (CAD) software target in efficient image registration. It
does not only allow measurements of lumen or thrombus volume, but combining
different image information is also useful for treatment planning and monitoring.
Thanks to it, the comparative analysis of consecutive (pre- and post-operative)
CTA studies as well as matching of different image modalities is possible.

Depending on the application, various registration techniques have been re-
ported [7–11]. The registration methods, which address the problem of simul-
taneous analysis of different image modalities are given in [7–10], whereas the
pre- and post-operative CTA sequence matching algorithm is presented in [11].
The authors of [9] propose a registration technique based on the overlaying the
preoperative 3D model of the aorta onto the intraoperative 2D X-ray images.
The presented technique utilizes two X-ray images showing the abdominal aorta
from different angles in an integrated way. They developed a hierarchical registra-
tion scheme deployed by a sensible partition of the registration parameter space
based on the image acquisition protocol and the patients motion constraint.

The 2D/3D registration technique is also addressed in [7]. The non-rigid
method enables information from the CT to be overlaid onto the fluoroscopy
images during the implantation procedure. The authors have investigated the
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use of manually picked landmarks and the thin plate spline algorithm to de-
form the CT surface so it more accurately represents the interventional scene.
The automatic movement compensation in 2D/3D registration of fluoroscopy
and preoperative volumetric data is presented in [10]. The paper proposes a
pelvis boundary detection method that enables real time monitoring of patient
movement and an automatic 2D/3D re-registration algorithm that compensates
for it.

The idea of a graph-based approach in this context is presented in [8]. The
introduced 2D/3D registration method is there formulated on a 3D graph and
applied for AAA interventions. As an input, the algorithm takes the 3D graph
generated from a segmentation of the CT volume and the 2D distance map
calculated from the 2D X-ray image. For computing the graph similarity, different
measures are then used in a length preservation and a smoothness regularization
term.

In this work we focus on 3D abdominal aortic aneurysm registration technique.
The developed approach makes it possible to match the aorta segmented in pre-
and post-operative CTA data. The presented technique is based on an aorta
lumen segmentation and graph matching technique. In the segmentation step a
hybrid level-set active contour approach is employed. The applied hybrid medical
image segmentation method in the level-set framework [12] uses the object’s
boundary as well as region information. In this approach a boundary gives the
information concerning object location, whereas the region features help to avoid
the boundary leakage. The matching step is performed based on a path similarity
skeleton graph matching procedure introduced in [21].

In the following section, a short introduction to the hybrid active contour
approach [12] applied for AAA lumen segmentation is given. In Section 3, the
3D skeletonization algorithm for graph extraction is described. Section 4 intro-
duces the graph matching technique and Section 5 presents the experiments and
the obtained results. Then, the last section (Section 6) concludes the work and
outlines plans for the future.

2 Abdominal Aortic Aneurysm Segmentation Method

The active contour model for image segmentation was originally developed by
Kass at. all [13] and the energy minimization techniques in image segmentation
have attracted researches in the last two decades. The basic idea of the snake
method [13] is to iteratively evolve the initial contour towards the regions de-
scribed by some certain features. The movement of the energy minimizing-spline
is guided by the geometry of the evolving curve (internal force) and influenced
by image features (external force). The image information pull the contour into
the lines, edges or terminations. Local minima of the contour energy correspond
to desired image properties. Since the classical implementation of the snake
method [13] was introduced, different modifications and improvements dictated
by its new applications were incorporated. Active contour model expanded by
gradient vector flow is presented in [14]. This efficient algorithm remains limited
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to the segmentation of structures with well defined contours. Geodesic active
contour model [15] and Chan-Vese approach [16] are two most important tech-
niques improving this segmentation technique standing out for boundary-based
and region-based methods.

In all the cases mentioned above, the image segmentation methods are based
on minimizing a predefined energy functionals. To solve the curve evolution
partial differential equations (PDEs) different numerical methods are applied. In
a classical approach the finite set of contour points approximates the parametric
contour Ψ(s) = (x(s), y(s)), s ∈ [0, 1] and the contour changes in time Ψ(s, t) =
(x(s, t), y(s, t)), s ∈ [0, 1], t = R+ ∪ {0} - the contour evolves with the points
movement. Geodesic [15], Chan-Vese [16] and the hybrid active contour [12]
used in this paper belong to the models developed in a level-set framework.
In the implementation [15] the solution of the particular energy snakes model
is given by a geodesic curve in a Riemannian space, being induced form the
image. The Chan-Vese active contour model [16] is based on the mean curvature
motion. The curve C is implicitly represented via a Lipschitz function φ and
by mathitC = {(x, y)|φ(x, y) = 0}. The initial contour is defined by the set
{(x, y)|φ0(x, y) = 0} and the evolution of the curve is given by the zero-level
curve at time t of the function φ(t, x, y). To solve the PDE the curve C evolves
in normal directions with the speed F [16]

∂φ

∂t
= |∇φ|F, φ(0, x, y) = φ0(x, y). (1)

2.1 Hybrid Level-Set Method

The same as in the active contour given in [16] in the hybrid technique [12],
employed in our work, the active contour C is represented by the zero set of em-
bedding function φ, such that C = {x|φ(x) = 0}. The points inside and outside
the contour have positive and negative φ values, respectively. The minimized
functional in image I domain Ω is defined as

E (φ) = −α

∫
Ω

(I − μ)H (φ)dΩ + β

∫
Ω

g|∇H(φ)|dΩ, (2)

where g = g(|∇I|) is a boundary feature map related to the image gradient.
The parameters α and β balance the two terms of (2), and μ indicates the lower
bound of the gray-level of the target object. Thanks to it, the curve evolves to
enclose the regions greater than μ. The PDE of the functional (2) is derived from
the Gateaux derivative gradient flow [12]

φt = |∇φ|
[
α(I − μ) + βdiv

(
g
∇φ

|∇φ|
)]

, (3)

and the explicit curve evolution PDE is represented by [12]

Ct = α(I − μ)
−→
N − β〈∇g · −→N 〉−→N + βgκ

−→
N. (4)
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The direction of the curve normal
−→
N is defined to point outward the curve and−→

N = − ∇φ
|∇φ| . The curvature κ is given by κ = div

(
∇φ
|∇φ|

)
. The used iterative

curve evolution algorithm, based on additive operator splitting (AOS) approach
is in detail described in [12]. Some preprocessing steps and parameter set up are
described in Sections 2.2 and 5, respectively.

2.2 Preprocessing and Initial Surface Selection

The analysed CTA series are affected by artefacts and noise, which can influence
the final segmentation results. Therefore, as a preprocessing step a 3D adap-
tive filtering procedure was employed. The selected filtering technique based on
anisotropic diffusion [18] increases the Signal-to-Noise Ratio (SNR) and preserves
the edges.

In the hybrid level-set implementation applied to volumetric CT data, the
authors of [12] used a sphere as an initial surface. The results presented by them
show that it successfully converges to the target object. However, the performed
experiments proved, that the time to converge the hybrid level-set algorithm [12]
strongly depends on this surface. In our work, the size of the analysed AAA
CTA data (512× 512×n, where n ∈ [220, 680]) determined the clustering-based
initial surface selection procedure. For this, we used a weighted fuzzy c-means
clustering procedure introduced in [17]. The initial surface was then created by
all the voxels belonging to the cluster with the highest mean gray intensity value.

Thanks to this two preprocessing techniques the hybrid level-set algorithm
enables fast and robust AAA segmentation. An exemplary final 3D segmentation
results of abdominal aorta lumen in CT series are shown in Fig. 3.

Fig. 3. An example of 3D abdominal aorta lumen segmentation results in an image
view (left) and volume rendering (right)
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3 Skeletonization

The CTA volume matching procedure being an overall goal of our work is based
on graph matching step described in the next section. For this a 3D skeletoniza-
tion step is incorporated. The 3D skeleton is obtained using the method de-
scribed in [19]. This automatic algorithm computes subvoxel precise skeleton of
volumetric data based on subvoxel precise distance field. The advantage of the
subvoxel approach over a voxel precise skeleton is, that it computes an accurate,
more precise and centered skeleton also for objects that are less than a single
voxel thick. The authors of [19] have proven, that it is a proper solution for the
accurate measurements of the object, such as vessel cross section or volume.

The input for the skeletonization method described in [19] is a subvoxel precise
distance field. To obtain this field the authors suggest a two steps preprocessing
technique. First, a level set time-crossing map calculation followed by a distance
field computation is performed. Then, a sampled level set time-crossing map
with the embedded zero-crossing isosurface is estimated. In our approach, the
isosurface required for this, which yields the object’s true boundary is created
based on the previously obtained segmentation results. Having a implicit repre-
sentation of the boundary, we estimate the subvoxel precise Euclidean distance
transform for n-dimensional data [20].

The Euclidean distance field is then used to find the point with the largest
distance from the boundary and to determine a speed image used as an input
for the fast matching propagation step. The speed image being a function of the
distance field (d - distance value and D - maximum distance value)

v =

(
d

D

)2

(5)

is used to determine the curve evolution velocity for each pixel. The point at the
global maximum distance from the objects boundary is calculated in a single
pass through the distance field. The first one encountered in scanline order is
used in the situation, if no unique maximum point exists. It is a start point for a
fast marching propagation algorithm, in which the obtained speed image is used.
The fast marching propagation is augmented to calculate the geodesic distance
(Manhattan distance) inside the object starting at the global maximum point
of the distance field. Based on the obtained results the branch points are then
estimated. The furthest point of the model from the global maximum distance
point is used as the start point of the branch. The remaining points of the branch
are determined by performing a gradient descent, back-tracking procedure on the
fast marching time-crossing map. This process is repeated for each branch of the
created skeleton [20]. The exemplary results of application of this method to
AAA data are shown in Fig. 4.

4 Graph Matching

The previously obtained aorta skeletons are now matched to properly register the
two analysed 3D CTA series for each examination. The registration procedure
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Fig. 4. An exemplary result of applying 3D skeletonization procedure (right) to an
abdominal aorta surface (left)

we used is based on the algorithm presented in [21]. In contrast to existing
approaches to skeleton similarity, the main idea of this approach is to match
the skeleton graphs by comparing the geodesic paths between their endpoints.
Therefore, the authors do not explicitly consider the topological structure of the
skeleton trees or graphs.

According to the definition given in [21] the so called skeleton path is ”a short-
est path between a pair of end nodes on a skeleton graph”. Based on the pre-
viously obtained segmentation and skeletonization results, and using a distance
transform DT (t) we are able to approximate the radius Rm,n(t) of the maximum
disk at each skeleton point with index t in a skeleton path p(vm, vn) connecting
the end nodes vm and vn. Therefore, the path is sampled by K equidistantly
distributed points. Due to the fact, that the CTA series also differ in the voxel
size, the normalization term proposed in [21] making the method invariant to
the scale is also required.

To define the similarity/dissimilarity between two skeleton paths R and R′

the authors of [21] suggest a path distance measure as

pd(p(u, v), p(u
′, v′)) =

M∑
i=1

(ri − r′i)
2

ri + r′i
+ α

(l − l′)2

l + l′
, (6)

where l and l′ are the lengths of paths p(u, v) and p(u′, v′) and α is a weighting
factor.

Let the two CTA series be described by two ordered graphs G and G′ with
K+1 and N+1 nodes (K ≤ N) respectively. The matching cost c(vi, v′j) between
end nodes vi and v′j is estimated based on the paths to all other vertices in G and
G′ that emanate from vi and v′j . The dissimilarity value between the end nodes
is estimated using the optimal subsequence bijection (OSB) method introduced
in [24]. The advantage of the OSB algorithm is, that it finds a subsequence a′ in
sequence a that best matches b′ in b skipping possible outlier elements. To prevent
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from skipping too many elements of sequence a the authors of [21] suggest a
penalty term b∞, being an additional element of b. The distance function d
computes the dissimilarity between a and b, that is, d(ai, bj) is given for all
(i, j) ∈ {1, . . . ,m}× {1, . . . , n,∞}, where m and n stand for the length of a and
b, respectively. As distance function d the path distance pd, defined in (6), is
used. The distance to the additional element d(ai, b∞) is a constant for all i ∈
{1, . . . ,m} determining the cost of skipping any given element on the sequence
a. The so called ”jumpcost” jc is computed as

jc = μ+

√
1

m
min

j=1,...,n
(d(ai, bj)− μ)2, μ =

m∑
i=1

1

m
min

j=1,...,n
(d(ai, bj)). (7)

Then, for any given correspondence, the distance between two sequences is de-
fined in [21]

d(a, b, f) =
1

m

m∑
i=1

(d(ai), bf(i))
2. (8)

Therefore, an optimal correspondence f̂ of elements in the sequence a to elements
in the sequence b over all possible correspondences f is defined as

f̂ = argmin{d(a, b, f)}. (9)

The optimal correspondence is found with the shortest path algorithm on a
directed acyclic graph (DAG), in detail described in [21].

The already described OSB is applied to the matrix of the path distances
between the two sequences vi0, vi1, . . . , viK in G (vi = vi0) and vj0, vj1, . . . , vjN
in G′ (vj = vj0). For the two analysed graphs G and G′ all the dissimilarity
costs between their end nodes are estimated and stored in a matrix C(G,G′).
The total dissimilarity c(G,G′) between G and G′ computed in [21] with the
Hungarian algorithm on C(G,G′) is here replaced by the algorithm proposed
in [23]. The authors presented there Maximum Weight Subgraphs (MWS) which
can be expressed as an integer quadratic problem:

max g(x) = xTAx subject to xTMx = 0, x ∈ [0, 1]n, (10)

where A is a symmetric n× n affinity matrix with ∀i, j = 1 . . . , n : Ai,j ≥ 0 and
M ∈ {0, 1}n×n represents a symmetric mutex matrix. The size of A corresponds
to the number of feature points that have been detected and the diagonal of A is
created using the output values obtained by the OSB. Since A expects similarity
data, the OSB cost values have to be converted. For this, a Gaussian function
with μ = 0.2 and σ = 10 is used. To populate the non-diagonal elements of A, a
pairwise distance consistency value is generated between two assignments.

A(u, v) = exp(
(d(i, j)− d(i′, j′))2

2σ2
), (11)

where u = (i, i′) and v = (j, j′) are the two assignments, the Euclidean distance
d(i, j) is calculated.

The exemplary results of matching two CTA series, or more accurately their
skeletons is shown in Fig. 5.
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Fig. 5. The exemplary results of matching two AAA skeletons

5 Results

The presented segmentation/registration framework was tested on the database
provided by the SOVAmed GmbH1. It consists of 8 pairs of of CTA series to be
segmented and matched. The examinations contain pre- as well as post-operative
data with the resolution of (512× 512) and the number of slices in the volume
varying form 220 to 680. In the preprocessing step, anisotropic diffusion filtering
with a conduction coefficient function q(x, y, z, t) = 1

1+(∇I
ν

2)
proposed by Perona

and Malik in [18] is used. The ν is the gradient modulus threshold that controls
the conduction experimentally set to 70. Based on the normalized CTA data
the number of clusters used in initial surface construction was set to 5. In the
employed hybrid level-set segmentation technique [12], a boundary feature map
related to the image gradient is a decreasing function g such as g = 1

1−c|∇I|2 ,
with the constant c controlling the slope set to 5. The parameters required for
(2) are set to α = 0.5 and β = 0.2, respectively. The proposed set-up makes it
possible to efficiently segment the aorta in all 16 analysed series. The obtained
segmentation results were then used in a matching/registration step.

For all the analysed pairs of volumetric data the skeletonization procedure
and matching algorithm were used. The proper skeletons were obtained for all
the 8 pairs. All of them were then matched and the matching results were ver-
ified by an expert. As matching results, a labelled skeleton points on both the
series were marked, so that the expert was able to verify them. In 4 for 8 anal-
ysed examinations the registration was correct. 4 of them required some manual
improvements. However, the analysis was performed on a real dataset, not pre-
pared for the analysis in any special way. The the difficulties in matching step
were caused by a different resolution of the series as well as their different length.
In all the cases, the series did not show exactly the same part of a patient body.
However, the need of the manual intervention will be reduced in a future work.
For this, we plan to incorporate a DICOM positioning information and modify
the matching algorithm so that it will be invariant to the resolution and the
length.
1 www.sovamed.com/en

www.sovamed.com/en
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6 Conclusions and Future Work

The paper presents a preliminary study in a 3D registration of abdominal aor-
tic aneurysm in CTA. The developed method consists of 3D segmentation part
and graph based registration procedure. The promising results obtained for 8
examinations consisting of 2 CTA series each encourage to further develop this
technique. In our work we plan to improve the segmentation as well as registra-
tion results incorporating a DICOM positioning information. One of the ideas
is to use an algorithm for automatic understanding medical images presented
in [22]. For future work an extended database is also considered.
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Abstract. In this paper various multiscale transformations, such as con-
tourlets, curvelets, tensor and complex wavelets, were examined in terms
of the precise representation of texture directionality in medical images.
In particular, subtle radiating and spiculated structures in mammograms
were modeled with sparse vectors of the image linear expansions. Impor-
tant properties of angular resolution, angular selectivity and shift in-
variance have been evaluated with simple phantoms. According to the
experimental results, the complex wavelets have been proved to be the
most effective tool in mammogram preprocessing to extract and uniquely
represent relevant spicular symptoms for accurate diagnosis.

Keywords: angular resolution and selectivity, shift (rotate) invariant,
multiscale transform, spiculed structures enhancement.

1 Introduction

Effective and of good quality imaging is important for further medical decision
making. Radiologist interprets medical images, describing the physical compo-
nents of potential visualized findings, such as shape, growth, and density tissue.
Precise characteristic of observed structures or some objects in the background
of imaged tissue tends to be significant issue to make an early and correct di-
agnosis by both radiologists and computer-aided systems. In the case of some
pathological findings, for example architectural distortion in mammography, di-
rectionality of their structures (commonly called spicules) is one of the main
important features to determine these pathology, observed on mammograms.

1.1 Mammographic Spicules

Architectural distortion is a breast lesion in which the normal structure of the
breast parenchyma is distorted as if being pulled into a central point, without a
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visible central density [3]. Briefly and clearly saying, it is a group of spicules radi-
ating from a certain area – not the visible mass. In contrast to other pathological
lesions in mammography, i.e. microcalcifications, oval or spiculated masses, ar-
chitectural distortions are not well-defined [5]. Moreover, interpretation process
of mammograms is significantly affected by image quality, conditioning of con-
tent assessment, individual radiologist knowledge and experience etc. affecting
cognitive errors. Therefore, architectural distortions as a subtle ambiguous direc-
tional findings are commonly misdiagnosed even by the most experienced radiol-
ogists [21]. The only typical feature of this type of pathology in mammography
is radiating spicules, but orientation distribution of these subtle mammographic
structures is often not clearly defined.

From the viewpoint of image processing, a model of architectural distortion
can be assumed piecewise lines propagated in different directions. Such an ap-
proach is used in many research studies on automatic recognition of this type of
abnormalities on mammograms. In order to extract spicules, the analysis of lo-
cal oriented edges [14, 15], statistical analysis of a map of pixel orientations [13],
skeleton analysis [16] or top-hat partial reconstruction [10–12] were conducted.
Moreover, the Dixon and Taylor line enhancement algorithm with a line strength
map (as their result) indicated the potential presence of oriented lines [23], es-
timation of a mean curvature sign and the concentration index [17, 18], Gabor
filtering and phase portrait [4, 20] or a curvilinear structure (CLS) ridge detec-
tion [6] were used.

Additionally, conducting image structure analysis our attention should be paid
to image noise. Therefore, it is worth noting that noise of digital mammogram
can be model as spatially correlated Poisson noise [1, 2, 22] and the noise power
is closely related to breast tissue (glandular to adipose tissue) [19].

1.2 Spicule Representation in Adjusted Transform Domain

Because of redundancy and limited quality of source image domain, the ap-
propriate spicule representation requires an optimally adjusted image transform
domain that allows precise extraction of piecewise structures of different orien-
tations in analyzed image. Therefore, an angular resolution and selectivity, shift
(rotation) invariance seem to be decisive to identify the effective image trans-
formation. Moreover, low transform-domain redundancy and low computational
complexity play also a significant role in design of useful numerical descriptors of
subtle mammographic structures with differentiated directionality. The above-
mentioned three major properties can be interpreted for our research as follows:

– angular resolution – the number of possible to distinguish directions in image,
– angular selectivity – the ability to distinguish between closely located objects

in image (so-called angular separation),
– shift (rotation) invariant – the same image (spectrum) in transform domain

independent of small shift (rotation) of objects in input image.
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There are many various methods for global image analysis of texture direc-
tionality. It is possible to capture dominant orientations in a whole image using
these global transformations, but it sometimes affects a noticeable number of
false positives in image processing (in case of architectural distortions). Such
approach associated with global directional characteristics, for instance based
on 2D polar FFT, could be applied at one initial stage of recognition process
to select the regions of interests (ROIs) with increased sensitivity of detection
procedures [7]. However, it is realized at the expense of permissible false pos-
itives reduced at next stages based on more precise analysis of local structure
directionality.

Local multiscale analysis of image texture could be adjusted to specific fea-
tures of selected ROIs providing better results of spicule detection [8]. However,
certain conditions should be fulfilled. First, local analysis should be matched to
the scale range of real informative structures in order to enhance only image
structures of interests and consequently to avoid false positives in detection pro-
cess. Second, too high computational complexity, which is often accompanied
by local image texture analysis (e.g. using Gabor filters [7]) as well as too high
domain redundancy of complex data correlation limit achieved performance.

The main goal of research presented in this paper is to investigate the suitabil-
ity of some local multiscale transformations for extraction of relevant directional
structures in mammograms. For this purpose, the selected bases/frames of tensor
wavelets, complex wavelets, contourlets and curvelets have been experimentally
studied and verified according to criteria of representation clarity of proposed
modeled multidirectional spicules.

Our attention has been paid to directional precision in determining of piece-
wise linear structure orientations due to improve of distributed spicule descrip-
tion and consequently increase of its recognition efficiency. The structures were
modeled in domains of four selected multiscale image transformations which have
been found to be useful for multiscale analysis of many advantageous applica-
tions. In particular, an influence of the size of clearly represented line structures,
possible to distinguish the distance of close-lying structures, and the target sen-
sitivity due to the rotation of line structures have been tested. To facilitate
correct interpretation information compaction in as sparse as possible object
representation in multiscale domain has been investigated.

2 Experimental Test of Angular Resolution

The angular resolution of new image domain should be matched to real needs, i.e.
the size of analyzed spicules, and the relation between these spicules (signal) and
surrounding background (noise). The size of example spicules in mammograms
was experimentally established in previous studies [9]. Thus, two phantoms con-
taining two closely-lying line structures (Fig. 1 - left) were tested. The sample
line width of 9 pixels and the line length of 89 or 189 pixels were adopted. To
provide adequate (relative to mammographic image) relationship between line
structures and background, Gaussian white noise of mean = 0.1 and variance =
3 was added (Fig. 1 – in the middle).
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Fig. 1. Two simple phantoms containing: a) two short lines of width 9 pixels and length
89 pixels, b) two longer line structures of width 9 pixels and length 189 pixels. Left to
right: phantom of closely-lying lines (rotation angle equals 45 degree), phantom with
added noise, and inefficient result of line detector for noisy phantom.

2.1 Angular Resolution versus Structure Rotation

It is commonly known that only some image transformations are shift (rotate)
invariant. To verify this aspect, important in line structure recognition process,
a simple test was carried out – the line structures on the created phantom were
rotated by 20, 50, 90 degrees, respectively. To compare the effectiveness of se-
lected multiscale transformations appropriate MATLAB toolboxes were used.
The achieved results presented in Fig. 2 confirm that complex wavelets tend to
be the least susceptible to rotation – the image of reconstructed lines are regard-
less of the rotation angle. In case of complex wavelets there are visible relatively
small blur at the ends of the lines on reconstructed images. The accuracy of phan-
tom reconstruction appears to be definitely lower for wavelets, contourlets, and
curvelets than complex wavelets. Using wavelets, additional undesirable shadows
appear around the reconstructed lines. There is a similar but less visible effect
for contourlet transform. However, the curvelets proved to be the least effective
tool to enhance the input signal with a small number of coefficients. Curvelets
identify and restore lines by isolated "dots", even if a large number coefficients is
used. Thus, it is almost impossible to achieve continuous-lines. It is worth noting
that the above-mentioned effects will be far more important in interpretation of
mammogram contents due to the degree of noise.

2.2 Angular Resolution versus Structure Size

Next, an influence of the number of transformation coefficients on angular resolu-
tion was investigated. It has been observed that angular resolution and selectivity
is significantly correlated with the number of transformation coefficients. How-
ever, it is worth mentioning that the number of coefficients, required to effective
line structure reconstruction, depends on several factors. Firstly, it depends on
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Fig. 2. The phantom of two closely-lying lines of 189 length and four reconstructed
images using only 100 significant coefficients of wavelets, contourlets, curvelets, and
complex wavelets (left to right). The rotation angle of lines θ = 0, 20, 50, 90 is tested.

the size of analyzed object in image. Secondly, the distance between objects is
not meaningless. Therefore, the noisy phantom with lines of d = 89, 189, 289 pix-
els length and the distance between them equal Δ = 5 or 10 pixels, respectively,
has been tested. The exemplary results are presented graphically in Fig. 3(a)
and Fig. 3(b) – for only N = 60 of significant coefficients, and in Fig. 4(a) and
Fig. 4(b) – for a much larger number of coefficients, i.e. for N = 500.

Comparing the reconstructed image containing lines with different distance
(Fig. 3(a) with Fig. 3(b) and Fig. 4(a) with Fig. 4(b)) it appears that line distance
is not as significant as length of line. Therefore, further discussion will focus on
correlation between the length of different oriented lines and the possibility of
their identification.

In order to objectively assess whether two lines are detected in the recon-
structed images, the Matlab function Demirel Edge Detector was used. Two
required parameters were determined experimentally: T = 0.5 – a threshold be-
tween 0 - 1, and t = 8 – the thickness of the line to indicate the edge (the t is
1 pixel smaller than the width of the phantom line due to slightly smaller size
of lines in the reconstructed image). The miserable effect of line detector for noisy
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(a) N = 60, Δ = 5 (b) N = 60, Δ = 10

Fig. 3. Visual representation of the impact of line length (from top to bottom:
d = 89, 189, 289 pixels, respectively) for reconstruction using only N = 60 significant
coefficients of wavelets, contourlets, curvelets, and complex wavelets (left to right). The
rotation angle of line θ = 30, the line distance Δ = 5 or 10 pixels.

(a) N = 500, Δ = 5 (b) N = 500, Δ = 10

Fig. 4. Visual representation of the impact of line length (from top to bottom:
d = 89, 189, 289 pixels, respectively) for reconstruction using only N = 500 significant
coefficients of wavelets, contourlets, curvelets, and complex wavelets (left to right). The
rotation angle of line θ = 30, the line distance Δ = 5 or 10 pixels.

phantom of closely-lying lines with distance between them Δ = 5 pixels can be
seen in Fig. 1 - right. The noise dominates the signal (line structures). However,
the detection of these lines is possible in a situation when the detector is used
on the reconstructed images obtained after the removal of a certain number
of coefficients. The results for noisy phantom with 189-pixels lines rotated by
θ = 30 degree are shown in Fig. 6.

Based on achieved results, it is noteworthy that input signal enhancement,
without unnecessary noise, is enabled only using the small number of complex
wavelet coefficients (about N = 60−100). This is also confirmed by the graph in
Fig. 5, obtained by use of four multiscale transformations of the noisy phantom
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Fig. 5. A sample graph showing a dependence of the number of transformation coeffi-
cients Ncoeff on the rotation angle θ for wavelets, contourlets, curvelets, and complex
wavelets, accordingly. This result is achieved for phantom with lines of length d = 189
pixels and distance between them Δ = 5.

with 189-pixels lines rotated by angle θ = 0− 90 degrees. However, it should be
mentioned that the number of transformation coefficients required for effective
line reconstruction seems to be independent on the length of analyzed structures.

Interpreting the results achieved for wavelets, it is apparent that using the
similar to the case of complex wavelets number of coefficients (see in Fig. 6,
N = 400 and 1000) the reconstruction of two closely-lying lines is also possible,
but simultaneously extra noise (constituting useless informations) is extracted.
In addition, only for θ = 0, 45, 90 closely-lying lines are quite accurately recon-
structed. For other value of θ these line structures connect locally (e.g. for θ = 30
in Fig. 6).

Furthermore, using increasing number of contourlets coefficients to distinguish
two closely-lying lines of different rotation angles is impossible. In this situation
the energy coefficients focuses not only on the signal but also the noise. Thus,
the number of coefficients, useful for the line reconstruction, is limited (see in
Fig. 6, N = 400 and 1000).

In the case of curvelet transform coefficients failed to keep the continuity of the
reconstructed lines (Fig. 3(a), Fig. 4(a), and Fig. 6). Therefore, it is suspected
that reconstructed structures tend to be discontinuous even using significantly
number of the curvelet transform coefficients.

Summarizing, it is undoubtedly that complex wavelets tend to be very useful
tool to investigate image texture directionality due to structure rotate and size
invariant. For the same number of the complex wavelet coefficients both the short
and long line structures can be enhanced on reconstructed images. Additionally,
to reconstruct the input signal without noise the smallest number of the complex
wavelet coefficients is sufficient (in comparison to other transformations).
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Fig. 6. Noisy phantom of two closely-lying lines (d = 89, Δ = 5 pixels) and four
reconstructed images using respectively N = 60, 400, 1000 significant coefficients of
wavelets, contourlets, curvelets, and complex wavelets (from left). Additionally, the
effect of line detector was presented. The rotation angle of line Θ = 30 is shown for
example.


